hp Unified Correlation Analyzer

W

Unified Correlation Analyzer
for
Event Based Correlation

Version 3.2

Administration, Configuration and Troubleshooting
Guide

Edition: 1.0

For the HP-UX (11.31) and Linux (RHEL 5.9 & 6.5) Operating Systems

April 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical
or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Windows® and Windows NT® are U.S. registered trademarks of
Microsoft Corporation.

Oracle?® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/0pen®is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Contents

[=] - o P

(611 11T R I |

[T T 1T o P | |

011 T 1.1 -] R 17

UCA for EBC AdMiNiStration.....cceceeeeieececeecereecerecrecessesessesescesesessessssesessesesssneses 12

2.1

2.1.1
2.1.2
2.1.3
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3

Starting and stopping UCA fOr EBCeeeeeeeeeeeeeceeeceeeeeeeeeeesreeseesee s seesseesnenee 12
Starting UCA FOr EBC.....ueoneeeeeeeeeeeeeeceeeeecteeeee et te e e eeseenessseeseeeseesnensnenenes 12
StOPPING UCA FOr EBC ...ttt tee et e e s sesae s e e e e e se e se s saeeean 12
Displaying the status 0f UCA fOr EBCceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeseeeeesnenns 13

CommMANA-LNE tOO0LSoeeeeeeeeeeeeeeeeeee ettt se e e e e e nas 14
UCA-CDC-INVENTOIY ...ttt eee st e s eseeessessseeesssesseeessnessnnennns 14
(U Tat= RY=] o Yot 15][ot o SRR 15
L8 o= =1 o ot o 3011 U 17
UCQ-EDC-INSTANCE ... ettt sttt ree s e e e s e e ae s aesne s e e s e e s se e an s nasnnens 24
(U Tat= RT=] o Yot o T= Lol 1 o TR 25

U0 o T o T UL T 131 =T o T 28

[0 F=T1.1 -] RO

UCA for EBC Configurationcccccceeeceeceneneceecneceecncceecceceescnsceescssscescsscssscnces 29

3.1

3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.25
3.3

3.3.1
3.3.2
34

3.4.1
3.4.2
3.4.3

Multiple instances configurationecceeeeieeeieeceecceeecree e s 29
CoNFIGUrAtION FIlS....ue ettt et ae e e e nas 30
uca-ebc.properties file configurationoceeeeeeeereereceeeeeeceeeee e 30
ActionRegistry.xml file configurationceeveeeeeeeeceeereecreceeceeeeeeeeee e 34
uca-ebc-logdj.xml file configurationcceeeeeeeeeeeeieeieeeeeeeeee e 39
Additional configuration fileS..........coeerueeeeereeeceeteeeeceecreerecere e e nae 40
How to revert back to the default configuration filescceeeeevveecerceeceeceeens 40
High-Availability (HA) configurationc.ceeeeveeerereeeeeereeeereeeeeseeessesessesseseesessenes 41
Simple cluster configuration USING NFSoooiieeieeeeeeceeeeee e 41
Neodj database High-Availability (HA) configuration for Topology Extension42
o T (] I o =L (o] <SS 43
Standalon@ UCA FOr EBC ...ttt ae s seseesee s se s enean 43
Clustered UCA FOr EBCocueeuieereeereeeeetesees e seseeseeaessessessessessssseessessesasssessneseens 43
UCA for EBC with external topology SErVer.........eceeeeeeeeeeeeeeeeeeeceeeeeeeeeaeeenns a4

01T 711 = SR - 1

UCA for EBC MONItoring......cccccceeeeeeienencieneecienencienenciensncsensssscssssscssssssssssssssssees 49

4.1

4.1.1
4.1.2
4.1.3
4.1.4

Monitoring the alarm flow in real-timececveeieeeeceeeeeceeee e 45
{0001 C=Tat o 1 gl = 1= R 46
(D13 0Tl =T g = 1Y RS 47
LV (UL o= Lol =T R 47
SCENAMO/ENGING LAYEL ...ttt ettt e ae et ne e saens 47

L0 T 7 T Y 1)

UCA for EBC Troubleshootingcccceeeeeeenieenicnncceeenenacceecsenncnscsessscnsscssscssess 49

5.1

5.1.1
5.1.2
5.1.3

Troubleshooting tOOLSccocueeeeeieieeeeeteeeeeeee ettt ettt s 49
LOG FIlS ettt ree e teesae e e e e s eese e s e e s e e s e s e ssense e sae s eeneennanns 49
UCA for EBC Graphical User INterface......cocoeveeeeeeeceeeeeeeeeeeee e eeenns 49
G T LYo 51

01T 1.1 -] R : ¥ 4

UCA for EBC Advanced TroubleShootingcccccceeeeeeecenncneieneceenceccnecccecencnccnees 87

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.2
6.3.3
6.4

UCA for EBCLOGGING MECNANISIMeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeseeseessesseesssenssensnns 87
Standard application l0ggingcecceceeeeeeueriesirrietrteeecteeee ettt 87
{00 1=Tl o] g (oo [113 T TR 88
SCENANIO LOGGING ..cuiruieirierereeeertreet et st et et essesae s e st s e e sesnessesasssesnseseans 88
Dro0lS lOGGINGcoeeeeiirereeeerireet ettt sttt et et ess e s s e st st et esaessesne e s s enes 96
Enabling these logs can be complementary to using the scenario specific Drools
engine logs that are described in section: 6.1.2 “Collector loggingc......... 97
Managing the Drools eNgiNe(S)ceceeeeeeeeeeeeieeete et ee ettt anenas 98
Dumping the Working MemOTYcccocveeeeeninienintrtereesesese st seeese s e ess 98
Clearing the Working MEMOrYceceeeeceeeeeeceeceeee et e e s e e e e s e 100
Reloading the TULESeeeeeeeeeeeeee ettt et e et e ee e e s e e e e s e e e neeean 101
Managing the flows and aCtIONScceveeeeririerirrirteccesce ettt 103
Managing the DB flOWS.......c.eecueeeeeeieeeeeeeeeeceecte et et e eereesressreseeaeeseesseeseenns 103
Managing the mediation flOWS.........ccoeveverinininrrcee e 105
[T =T o [T aTo i Tot i To] 3 E-J OO 108
UCA for EBC Performance analysSisccceeeeereeerreereeeecerereeeseeeeeeseesseesssessesssesssens 109

(61 - 1] (-1 U B I |

Frequent problems and solutions.........cccccceeieeieeceecncnencceccecceceecceceececceccecceeee 111

7.1

7.1.1
7.1.2
7.2

7.2.1
7.2.2
7.3

7.3.1
7.3.2
7.3.3

Problems executing uca-ebc-admin.........ccccceeeeeeieeeeeeeceeeereeecee e e e e eaeeeens 111
Cannot connect to UCA for EBC JMX cONNECLONccceeeeeeeeeeeerereeceeeeeeeeeee e 111
FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-admin.log...... 111

Problems executing UCa-ebC-iNJECLON......ccceeeeeeeeieeeeceeeee ettt e esaeeneens 112
Cannot create CoONNECLIONcoceiieeeieteeeeceeer e e e s se s ne s 112
FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-injector.log....113

Problems starting UCA fOr EBCeeeeeeeeeeeeceeeeeeeteee et e treeaeeesneeesseeeneeesnnennns 113
AlreadyBoUNAEXCEPLIONcc.eeeeeeeeeeeeteeeeeee e e reeeete e e e eeseeeesseeeseeseseeensesesaeenees 113
ClassNotFoundException: javax.management.remote.rmi.RMIServerimpl_Stub114
FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc.log.................. 115

611 L Ty & | -

Figures

Figure 1 - ACtioNREGISTIY. XIMLTILEeeeueeeeeeeeeeeceeeeecteeeeeteete e eeeseeeaeeeeese e eeseeesseseesaeesseesaeessenseenns 35
Figure 2 - UCA for EBC — Monitoring the AlLarm FLOWccceeceeeeeeieeeeeeeeeeeeeeeeeeneeeeeeeeeeseeeeaeessessnenns 46
Figure 3 - Troubleshooting/Log panel at Application LeVel........c.oceeeeeeeeeeeeeeeeeee et 50
Figure 4 - Troubleshooting/Statistics panel at Application Level.........cceceeeeeceeceeeeceeceeeeceeeeee e 51
Figure 5 - Java JMX Console: Connecting to UCA fOr EBC SEIVETcueeeeeeeeeeeeeeeeeerecereeeeeeeeeeeeeseessnenns 52
Figure 6 - Java JMX Console: UCA fOr EBCMBEANScc.coereeteneereenneeenenteteeeesesseeessessesseeeessesssssesnes 53
Figure 7 - Java JMX Console: UCA for EBC ACtION MANAGETccceeueeeererirnerrteeenresneeenneeeeseeeeseesseesesnes 54
Figure 8 - Java JMX Console: UCA for EBC Collector - Attributes.........ccveeeeeeeevecvecereceeeeeeeeeeeeeeeneeene 58
Figure 9 - Java JMX Console: UCA for EBC Dispatcher - Attributes..........ccceeeeeeeveeeeeeeeeereeeeeeeeeeeeneenns 60
Figure 10 - Java JMX Console: UCA for EBC Properties - ATttribUtesccoceverveeeeereerenenrensereeceeeeenenes 62
Figure 11 - Java JMX Console: UCA for EBC Server - Operationscceeeeeeeeereeeeeeeeereeeseeeseeeseeessesseenns 64
Figure 12 - Java JMX Console: UCA for EBC Value Pack Manager - Operations..........cccceeeeevveeveervecnnenns 65
Figure 13 - Java JMX Console: @ UCA for EBCValue PacKccoeeuerieiririnnirerrereeeesesese et ereseeenennes 68
Figure 14 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes.........cccceeeeeveeuenenee. 69
Figure 15 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operationscccceeveeveenennee 71
Figure 16 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Attributes..........cceeeeceeecercvecnennes 72
Figure 17 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Operationscccceeeeeevveeveenennns 73
Figure 18 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows - Attributesc..c....... 74
Figure 19 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows - Operations...........c......... 76
Figure 20 - Java JMX Console: UCA for EBC Value Pack - SCENANIOScceceeververererenerineneneeeeneeenennes 78
Figure 21 - Java JMX Console: UCA for EBC Value Pack — Value Pack - Attributes........cccccceverevevucnenne. 79
Figure 22 - Java JMX Console: UCA for EBC Value Pack — Value Pack - Operations........ccccceueeveeveennnnes 81
Figure 23 - Java JMX Console: UCA for EBC Value Pack —Scenario - Attributes.........cccecevververveenucenenne. 82
Figure 24 - Java JMX Console: UCA for EBC Value Pack — Scenario - Operationscccccceeeeeeveeeveennnne 85
Figure 25 - Configuring scenario specific logging in the uca-ebc-logdj.xmlfile........ccceeueereeeeeerveennnnes 89
Figure 26 - Configuring scenario exceptions specific logging in the uca-ebc-log4j.xmlfile................. 90
Figure 27 - Java JMX Console: Enabling/Disabling scenario specific rule execution logging for one
SCENANIO cuveeeeueereeeeeeerestereseesesteseeeseeeseseeseseesesseseseasostessssesassasassesessessstesessessssessssessstessssesssessssessssessnensnne 91
Figure 28 - Selecting the JBoss Drools perspective in Eclipse IDE by clicking on the JBoss Drools
POISPECEIVE ICOM cceeeeeeeeeieeeeeteeeeeteeeeerteeeeetreeeeseeesesseseeesssseeesssssesessssasessssesesssssesessssessasssesenssssesesssasenns 92
Figure 29 - Selecting the JBoss Drools perspective in Eclipse IDE by using the Eclipse IDE menus92
Figure 30 - Showing the JBoss Drools Audit view in EClipS@ IDEooueeeeieeeeeeeeeceeeceee e e eeeens 93
Figure 31 - Eclipse IDE: Using drag and drop to open a Drools engine log file in the Drools Audit panel
.. 93
Figure 32 - Eclipse IDE: Using the “Open log” icon to open a Drools engine log file in the Drools Audit

1 11 1= TSRSt 94
Figure 33 - Eclipse IDE: Viewing scenario rule eXecution logscceeeeeeeeeeeeeceeceeceeeseeeeeereeeeeeaeeene 94
Figure 34 - Showing the JBoss Drools Agenda or Working Memory view in Eclipse IDE....................... 95
Figure 35 - Running a JUnit Test of a Value Pack in debug mode in Eclipse IDEcccoeeeeeeceerevennnes 95
Figure 36 - Sample view of the Drools Working Memory panel in Eclipse IDE..........ccceeeoveeeveeecveeceennnes 96
Figure 37 - Sample view of the Drools Agenda panelin EClipS@ IDEooveeveeeeeeeeeeceeeeeeeeeeeeseenne 96
Figure 38 - Configuring the log for Working Memory Agenda and Event Listeners..........cccceeeverereennes 97
Figure 39 - Java JMX Console: Dumping the working memory of @ SCenariocccceeeeeeeceeeceerceennnes 99
Figure 40 - UCA for EBC User Interface: Dumping the working memory of a scenarioccceeveennee 99
Figure 41 - Java JMX Console: Clearing the working memory of a Scenario.........cccceeveeeeeeeeceeennenee. 100
Figure 42 - UCA for EBC User Interface: Clearing the working memory of a scenario........ccccecuveeuuen.. 101
Figure 43 - Java JMX Console: Reloading the rules of 2 SCENANIOcccveeeeeeeceeeceeeeeeeeeeeeee e 102
Figure 44 - Java JMX Console: Reloading the rules of all Scenarios of a Value Pack........................... 102
Figure 45 - UCA for EBC User Interface: Reloading the rules of a Scenario........cccceeeceeeceveeceeeceveecnenne 103
Figure 46 - Java JMX Console: Performing operations on a single DB flowccceeeeeevieecveeceveenenne 104
Figure 47 - UCA for EBC User Interface: Performing operations on a single DB flow.......................... 105

Figure 48 - Java JMX Console: Performing operations on mediation flows at the Value Pack level ..105
Figure 49 - UCA for EBC User Interface: Resynchronizing the mediation flows of a Value Pack 106

Figure 50 - Java JMX Console: Performing operations on a single mediation flowccoeueun.e.... 107
Figure 51 - UCA for EBC User Interface: Performing operations on a single mediation flow.............. 108
Figure 52 - Java JMX Console: Dumping Failed Actions for a SCeNArioccceeveveevceeeceecceecceecee e 109
Figure 53 - Java JMX Console: Monitoring performance of UCA for EBC Server.........cccceeveeeeecveeeennen. 110

Tables

Table 1 - Software versions 9
Table 2 - uca-ebc-injector tool options 17
Table 3 - Properties for uca-ebc-injector in uca-ebc.properties file 17
Table 4 - uca-ebc-admin tool main options 21
Table 5 - uca-ebc-admin tool sub-options 24
Table 6 - Properties for uca-ebc-admin in uca-ebc.properties file 24
Table 7 - Main options for the uca-ebc-instance tool 25
Table 8 - Options for backing up UCA for EBC instances using the uca-ebc-instance tool 26
Table 9 - Options for restoring UCA for EBC instances using the uca-ebc-instance tool 27
Table 10 - Options for listing the available UCA for EBC instance backups using the uca-ebc-instance

tool 28
Table 11 - Host and Port # properties in the uca-ebc.properties file 31
Table 12 - Web GUI properties in the uca-ebc.properties file 32
Table 13 - Collector properties in the uca-ebc.properties file 32
Table 14 - Action Manager properties in the uca-ebc.properties file 33
Table 15 - Rule Engine logger properties in the uca-ebc.properties file 33
Table 16 - Java JMX Console: UCA for EBC Action Manager — Action Queue - Attributes 55
Table 17 - Java JMX Console: UCA for EBC Action Manager — Action Queue - Operations 56
Table 18 - Java JMX Console: UCA for EBC Action Manager — Action Statistics - Attributes 56
Table 19 - Java JMX Console: UCA for EBC Action Manager — Action Statistics - Operations 57
Table 20 - Java JMX Console: UCA for EBC Action Manager — Action Threads - Attributes 57
Table 21 - Java JMX Console: UCA for EBC Action Manager — Action Threads - Operations 57
Table 22 - Java JMX Console: UCA for EBC Collector - Attributes 59
Table 23 - Java JMX Console: UCA for EBC Collector - Operations 59
Table 24 - Java JMX Console: UCA for EBC Dispatcher - Attributes 61
Table 25 - Java JMX Console: UCA for EBC Dispatcher - Operations 61
Table 26 - Java JMX Console: UCA for EBC Properties - Attributes 63
Table 27 - Java JMX Console: UCA for EBC Server - Operations 64
Table 28 - Java JMX Console: UCA for EBC Value Pack Manager - Attributes 65
Table 29 - Java JMX Console: UCA for EBC Value Pack Manager - Operations 68
Table 30 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes 70
Table 31 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations 72
Table 32 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Attributes 73
Table 33 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Operations 74
Table 34 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows - Attributes 75
Table 35 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows - Operations 77
Table 36 - Java JMX Console: UCA for EBC Value Pack — Value Pack - Attributes 80
Table 37 - Java JMX Console: UCA for EBC Value Pack — Value Pack - Operations 82
Table 38 - Java JMX Console: UCA for EBC Value Pack — Scenario - Attributes 85
Table 39 - Java JMX Console: UCA for EBC Value Pack — Scenario - Operations 86
Table 40 - uca-ebc-admin: Cannot connect to UCA for EBC JMX connector 111
Table 41 - uca-ebc-admin: FileNotFoundException 112
Table 42 - uca-ebc-injector: Cannot create connection 112
Table 43 - uca-ebc-injector: FileNotFoundException 113
Table 44 - uca-ebc: AlreadyBoundException 113
Table 45 - uca-ebc: ClassNotFoundException 114
Table 46 - uca-ebc: FileNotFoundException 115

Preface

This guide provides an overview of Unified Correlated Analyzer for Event Based
Correlation product and describes how to administer, configure, monitor and
troubleshoot the UCA for EBC product.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also
referred to in this document as UCA for EBC)

Product Version: 3.2

Intended Audience
Here are some recommendations based on possible reader profiles:
e Solution Developers

e Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation HP-UX 11.31 for Itanium

Server Version 3.2 Red Hat Enterprise Linux Server release 5.9 &
6.5

UCA for Event Based Correlation HP-UX 11.31 for Itanium

Channel Adapter Version 3.2 Red Hat Enterprise Linux Server release 5.9 &
6.5

UCA for Event Based Correlation Windows XP / Vista

Software Development Kit Windows Server 2007

Version 3.2 Windows 7
Red Hat Enterprise Linux Server release 5.9 &
6.5

Table 1 - Software versions

Typographical Conventions
Courier Font:

e Source code and examples of file contents
¢ Commands that you enter on the screen

e Pathnames

e Keyboard key names

Italic Text:

¢ Filenames, programs and parameters.

e The names of other documents referenced in this manual.
Bold Text:

e Tointroduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] HP UCA for EBC Reference Guide

[R2] HP UCA for EBC Value Pack Development Guide
[R3] HP UCA for EBC User Interface Guide

[R4] HP UCA for EBC Installation Guide

[R5] HP UCA for EBC Topology Extension Guide

[R6] HP UCA for EBC Clustering and HA Guide

Support

Please visit our HP Software Support Online Web site at
https://softwaresupport.hp.com/ for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:
e Downloadable documentation.
e Troubleshooting information.
e Patches and updates.
e Problem reporting.
e Training information.

e Support program information.

10

https://softwaresupport.hp.com/

Chapter 1

Introduction

This guide describes how to administer, configure, monitor and troubleshoot the
UCA for EBC product.

Throughout this document, we use the s {uca EBC HOME} environment variable to
reference the root directory (“static” part) of UCA for EBC. The default value for the
${UCA EBC HOME} environment variable is /opt/UCA-EBC. The
${UCA EBC HOME} environment variable thus references the /opt/Uca-EBC
directory unless UCA for EBC “static” part has been installed in an alternate
directory.

We also use ${UCA EBC_DATA} environment variable to reference the data
directory (“variable” part) of UCA for EBC. The default value for the

${UCA_EBC DATA} environment variableis /var/opt/UCA-EBC. The
${UCA_EBC_DATA} environment variable thus references the /var/opt/Uca-EBC
directory unless UCA for EBC “variable” part has been installed in an alternate
directory.

Since UCA-EBC V2.0, the s {uca_EBC_ DATA} directory may contain multiple
instances of UCA-EBC. In this document, we will use the value

${uca EBC INSTANCE} forreferringto

${UCA EBC DATA}/instances/<instance-name> directory.

At installation, a single <instance-name> is configured: default.

"~ For more information on how to install the UCA for EBC product, please refer
to: [R4] HP UCA for EBC Installation Guide.

%~ For more information on the UCA for EBC product, please refer to: [R1] HP UCA
for EBC Reference Guide.

11

Chapter 2

UCA for EBC Administration

2.1 Starting and stopping UCA for EBC

2.1.1 Starting UCA for EBC

To start UCA for EBC, please run the following commands as uca user:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc start

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC

*** INFO: Starting UCA for Event Based Correlation version 3.2

Traces are logged inthe $ {UCA_EBC_INSTANCE}/logs/uca-ebc.log file.

To start UCA for EBC in verbose mode (traces logged to the console), please run the
following commands as uca user (note the use of the —v option):

On both HP-UX, and Linux:

$ cd S${UCA EBC HOME}/bin
$ uca-ebc -v start

Since UCA-EBC V2.0, it is possible to launch multiple instances on a same machine.
Each instance is managed by the uca-ebc-instance command line tool (refer
to chapter 2.2.4). If not specified, the default instance is launched.

To start UCA for EBC for a specific instance (specified by <instance-name> in
the example below), please run the following commands as uca user (note the use
of the —i option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> start

2.1.2 Stopping UCA for EBC

In order to stop UCA for EBC, please run the following commands as uca user:

12

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc stop

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC

*** INFO: Shutting down UCA for Event Based Correlation version 3.2
*** INFO: UCA for Event Based Correlation version 3.2 has been
successfully stopped

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the default instance is stopped.

To stop UCA for EBC for a specific instance (specified by <instance-name> in the
example below), please run the following commands as uca user (note the use of
the —i option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> stop

2.1.3 Displaying the status of UCA for EBC

In order to show the status of UCA for EBC, please run the following commands as
uca user:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc status

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC

*** INFO: UCA for Event Based Correlation version 3.2 is running

The status of UCA for EBC can either be “Running” or “Stopped”.

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the status of the default instance is returned.

To get the status of UCA for EBC for a specific instance (specified by <instance-
name> in the example below), please run the following commands as uca user
(note the use of the —i option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> show

13

2.2 Command-line tools

Some command-Lline tools are provided in the ${UCA_EBC_HOME}/bin folder that
may prove to be of some help to users of UCA for EBC:

uca-ebc-inventory: this command-line tool lists the UCA for EBC packages
installed on the system.

uca-ebc-injector: this command-line tool provides the capability to inject
alarms described in XML files directly into the UCA for EBC input queue
without going through the mediation layer (0SS Open Mediation V7.1),
thus bypassing both 0SS Open Mediation V7.1 and UCA for EBC Channel
Adapter

uca-ebc-admin: this command-line tool provides a lot of options to
configure, administer, and monitor UCA for EBC, but also UCA for EBC value
packs and scenarios. Most of the features of this tool are also available
using the UCA for EBC User Interface.

uca-ebc-instance: this command line tool manages the different
instances of UCA for EBC. It provides options to list current instances, add
a new instance, delete or rename an existing instance and set the default
instance name.

uca-ebc-backup: this command line tool provides facilities for backup and
restore of the instances of UCA for EBC.

For more information on the UCA for EBC User Interface, please refer to: [R3] HP
UCA for EBC User Interface Guide

2.2.1 uca-ebc-inventory

This command-line tool lists the packages (including patches) installed on the
system for the following products:

o UCA for EBC Server

e UCA for EBC Channel Adapter for 0SS Open Mediation
e UCA for EBC Development Kit

e (0SS Open Mediation

To execute the uca-ebc-inventory tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-inventory

Here’s an example of the output of the execution of uca-ebc-inventory:

14

The uca-ebc-inventory tool has no execution options and no associated
configuration file.

2.2.2 uca-ebc-injector

This command-line tool provides the capability to easily send events (Alarm
creation, Alarm Attribute Value Change, Alarm State Change, Alarm Deletion, etc...)
to UCA for EBC by pushing XML files containing these events to the JMS input queue
(implemented as a JMS Topic) of UCA for EBC.

The alarms are directly injected into UCA for EBC without going through the
mediation layer (0SS Open Mediation V7.1), thus bypassing both 0SS Open
Mediation V7.1 and UCA for EBC Channel Adapter.

This command-line tool can be very helpful for testing UCA for EBC Value Packs in
real conditions without having to set up the mediation layer (0SS Open Mediation
V7.1 and UCA for EBC Channel Adapter).

The following sections describe how to execute and how to configure the uca-ebc-
injector tool.

To execute the uca-ebc-injector tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector <options>

<options> is a list of valid options for the uca-ebc-injector tool

The uca-ebc-injector command-line tool can be used either in random mode, where
random alarms are generated automatically based on a template and sent to UCA
for EBC, or in file mode, where alarms are provided to the uca-ebc-injector tool as
an XML file that is then sent to UCA for EBC.

The uca-ebc-injector tool is by default in file mode unless the -r or --random option
is used, in which case the uca-ebc-injector tool is in random mode.

To use the uca-ebc-injector tool in file mode, please use the following commands:

15

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector -file /tmp/Alarms.xml

The above command will send 1 burst of alarms to UCA for EBC. The alarms in this
burst will be exactly the same as the alarms in the file specified by the -file or --
filename option.

To use the uca-ebc-injector tool in random mode, please use the -r or --random
option. Below is an example of the uca-ebc-injector tool being used in random
mode:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector --random -file /tmp/Alarms.xml --number 10 -
-delay 5000

The above command will send 10 bursts of random alarms to UCA for EBC. The
delay between each burst will be 5 seconds. Each burst of alarms will send one
alarm unless the --buffer-size option is specified. The alarms sent in the burst will
be the same as the alarms in the template file except for the ID of the alarms
(sequential IDs will be used instead) and the severity of the alarm (the severity will
be chosen at random).

Since UCA for EBC 3.2, it is possible to have multiple instances running on a same
machine. If not specified, the uca-ebc-injector tool applies to the default instance.

This tool has the following options available:

-i <instance-name> Default value: default

This option sets the instance of UCA for EBC to use.
Instance <instance-name> must exist. If used, this
option must be set as first option.

--buffer-size <Slize> Default value: 1

This option is used in random mode (-r, or --random
option) to specify the number of alarms per alarm
burst.

--delay <Delay> Default value: 0

This option specifies the delay (in milliseconds)
between 2 alarms files (in file mode) or 2 alarm bursts
(in random mode).

-f, -file <Filename> No default value

This option sets the uca-ebc-injector tool in file or
random modes. It specifies one alarm file to use as
input for the uca-ebc-injector tool.

The file specified by <filename> must be a valid XML
file complying with the Alarm XSD file located at the
following location: ${UCA_EBC_HOME}/schemas/uca-
expert-alarm.xsd

16

--number <Number> Default value: 1

This option is used in random mode (-r, or --random
option) to specify the number of alarm bursts to be
sent

-r, --random This option sets the uca-ebc-injector tool in random
mode.

This option can be used in conjunction with the -file
option to send random alarms (sequential IDs,
random severity) based on the alarms provided with
the -file option

Table 2 - uca-ebc-injector tool options

The uca-ebc-injector tool has some configuration properties defined in the
${UCA_EBC_ INSTANCE}/conf/uca-ebc.propertiesfile, but these
properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

java.naming.factory.initial Default value :
org.apache.activemgq.jndi.ActiveMQInitialContextFactory

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

java.naming.provider.url Default value :
tcp\://${uca.ebc.serverhost}\:${uca.ebc.jms.broker.port}

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

topic.uca-ebc-alarms Default value : com.hp.uca.ebc.alarms

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

Table 3 - Properties for uca-ebc-injector in uca-ebc.properties file

2.2.3 uca-ebc-admin

This command-line tool provides a lot of options to configure, administer, and
monitor UCA for EBC Server, but also UCA for EBC value packs and scenarios. Most
of the features of this tool are also available using the UCA for EBC User Interface.

The following sections describe how to execute and how to configure the uca-ebc-
admin tool.

To execute the uca-ebc-admin tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-admin <options>

17

<options> is a list of valid options for the uca-ebc-admin tool (both main options

and sub-options)

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the uca-ebc-admin tool applies to the default instance.
Otherwise, the instance to administer can be specified withthe -i <instance
name> option. This option must be the first option listed.

The following table lists the main options of the uca-ebc-admin tool (sub-options
can be used alongside these main options, the list of which is described further):

=h, --help

-i <instance-name>

-a, —-audit

-s, -=stats

-1, --list
-lg, --log4j

-p, --perf

This option displays the uca-ebc-admin tool usage
message

This option sets the instance of UCA for EBC to
administer. Instance <instance-name> must exist. If
used, this option must be the first option.

This option dumps full audit information (including
status, performance information):

e information on UCA EBC instance:
o Value pack manager
o Collector
o Dispatcher
o Action Threads, Stats, Queue
o Alarm forwarders
e Information on value packs
o Mediation flows
o Db flows
¢ Information on scenarios
o Filters
o Queue
o Working Memory
o Scenario/Watchdog threads

This option always applies to all value packs and
scenarios.

This option dumps specific statistics information
(including status and some performance
information) on all value packs and scenarios or a
specific value pack or scenario depending on the
sub-options used.

& See Notes: () (2) 3)

This option lists all Value Packs and Scenarios

This option reloads the UCA for EBC log4j
configuration file

This option displays performance measurements.

18

-w, --workingMemory

-c, --clean

-1, --reload

-rc, --reloadConf

-dep, --deploy

-undep, --undeploy

This option dumps the working memory of one or
more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

&~ See Notes: (1) (3) (3)

This option cleans the working memory (retracts all
facts) of one or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

&~ See Notes: (1) (3) (3)

This option reloads the rule engine of one or more
scenarios or reloads a specific rules file.

By default this option reloads the rule engine of all
scenarios of all value packs except if sub-options
are used.

&~ See Notes: (") (2) (3) (4)

This option reloads the configuration files. The files
to be reloaded can be chosen between the:

- whole set of files of all actives value packs

- whole set of files of a single active value pack

- whole set of files concerning a single scenario

- a single file within a scenario when used in
conjunction with the —conf sub-option.

&~ See Notes: (") (2) () (5)

This option deploys a value pack stored in the
${UCA_EBC_INSTANCE}/valuepacks directory into
the ${UCA_EBC_INSTANCE}/deploy directory.

This option applies to the selected value pack.
5~ See Note: (2)

Once deployed, the value pack can be started by
executing the uca-ebc-admin tool with the -start, --
start option (if UCA for EBC is already running) or by
starting UCA for EBC (if UCA for EBC is stopped).

This option undeploys a value pack from the
${UCA_EBC_INSTANCE]}/deploy directory and creates
an archive (ZIP file) of it in the
${UCA_EBC_INSTANCE}/valuepacks directory. The
zipped value pack that was previously present in
the ${UCA_EBC_INSTANCE}/valuepacks directory is
moved to the ${UCA_EBC_INSTANCE}/archive
directory and a timestamp is added to the file name.

This option applies to the selected value pack.
&~ See Note: (?)

Once the value pack has been undeployed, it can be
deployed back again by using the -deploy, --deploy
option.

19

-start, --start

-stop, --stop

-d, --disable

-e, --enable

-rl, --ruleLogging

-startflow, --startflow

-stopflow, --stopflow

This option starts a value pack.

This option applies to the selected value pack.
¥~ See Note: (?)

This option stops a value pack.

This option applies to the selected value pack.
¥~ See Note: (?)

This option disables:

e either rule engine logging (if -rl,--
ruleLogging option is also selected)

e orscenario logging (if -sl,--
scenarioLogging option is also selected).

This option enables:

e either rule engine logging (if -rl,--
ruleLogging option is also selected)

e orscenario logging (if -sl,--
scenarioLogging option is also selected).

Used in conjunction with either the —d, --disable or —
e, --enable options, this option enables or disables
rule engine logging for one or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

&~ See Notes: (1) (3) (3)
This option starts a mediation flow.

Used with the -vpn <value pack name> and —vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, —vpv <value
pack version>, and —flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

This option stops a mediation flow.

Used with the -vpn <value pack name> and —vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, —vpv <value
pack version>, and —flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

20

-resyncflow, --resyncflow This option resynchronizes a mediation flow.

Used with the -vpn <value pack name> and —vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, —vpv <value
pack version>, and —flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

-statusflow, --statusflow This option displays the status of a mediation flow.

Used with the -vpn <value pack name> and —vpv
<value pack version> sub-options, this option
applies to all the mediation flows of the selected
value pack.

Used with the -vpn <value pack name>, —vpv <value
pack version>, and —flow <flow name> sub-options,
this option applies to the selected mediation flow of
the selected value pack.

-dumpfa, -- Dumps failed actions of a scenario to the logs.
LR T This option applies to the selected scenario.
5~ See Note: (3)

-retractfa, -- Retracts failed actions of a scenario from Working
retractfailedactions Memory

This option applies to the selected scenario.
¥~ See Note: (3)

-R, --restartServer Restart the UCA-EBC Server
¥~ See Note: ()

-S, --showServer Shows the status of UCA-EBC Server
&~ See Note: (6)

-T, --stopServer Stops the UCA-EBC Server
&~ See Note: (6)

Table 4 - uca-ebc-admin tool main options

Here’s the list of notes that applies to the above “uca-ebc-admin tool main options”
table:

Notes

() If no sub-option is selected, then the option applies to all value packs or all their
scenarios

(3) If -vpn <value pack name> and —vpv <value pack version> sub-options are
selected, then the option applies to the specified value pack or all its scenarios

(3) If -vpn <value pack name>, -vpv <value pack version>, and -scenario <scenario
name> sub-options are selected, then the option applies to the specified scenario

21

(4) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario
name>, and -rule <rules file identifier> sub-options are selected, then the option
applies to the specified rules file.

(®) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario
name>, and -conf <configuration file identifier> sub-options are selected, then the
option applies to the specified configuration file.

(®) If -i <instance name> option is selected, then the option applies to the specified
UCA-EBC Server instance. Otherwise it applies to the default UCA-EBC Server
instance.

The following table lists the sub-options that can be used in conjunction with the
main options of the uca-ebc-admin tool:

-vpn <value pack name> Used in conjunction with the -vpv sub-option,
this sub-option selects the value pack specified
by <value pack name> and <value pack version>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory

e -c,--clean

e -r,--reload

e -dep, --deploy

e -undep, --undeploy

e -start, --start

e -stop, --stop

e -rl,--ruleLogging

e -s|,--scenarioLogging

e -startflow, --startflow

e -stopflow, --stopflow

e -resyncflow, --resyncflow
e -statusflow, --statusflow
e -5, --stats

-vpv <value pack version> Used in conjunction with the -vpn sub-option,
this sub-option selects the value pack specified
by <value pack name> and <value pack version>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory
e -c,--clean

e -r,--reload

e -dep, --deploy

e -undep, --undeploy

22

-scenario <scenario name>

-rule <rules file identifier>

-flow <mediation flow name>

e -start, --start

e -stop, --stop

e -rl,--ruleLogging

e -s|,--scenarioLogging

o -startflow, --startflow

e -stopflow, --stopflow

e -resyncflow, --resyncflow
o -statusflow, --statusflow
e -3, --audit

e -5, --stats

Used in conjunction with the -vpn, and -vpv sub-
options, this sub-option selects the scenario
specified by <value pack name>, <value pack
version>, and <scenario name>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory
e -c,--clean

e -r,--reload

e -rl,--ruleLogging

e -s|,--scenarioLogging

Used in conjunction with the -vpn, -vpv, and -
scenario sub-options, this sub-option selects
the rules file specified by <value pack name>,
<value pack version>, <scenario name>, and
<rules file identifier>.

This sub-option can be used alongside the
following options:

e -r,--reload

The rules file identifier is the name that is
associated with a rules file for a specific scenario
(see ValuePackConfiguration .xml file).

Used in conjunction with the -vpn, and -vpv sub-
options, this sub-option selects the mediation
flow specified by <value pack name>, <value
pack version>, and <mediation flow name>.

This sub-option can be used alongside the
following options:

e -startflow, --startflow
e -stopflow, --stopflow
o -resyncflow, --resyncflow

e -statusflow, --statusflow

23

The mediation flow name is the name that is
associated with a specific mediation flow (see
ValuePackConfiguration .xml file).

-conf <configuration file Used in conjunction with the -vpn, -vpv, and -

identifier> scenario sub-options, this sub-option selects
the rules file specified by <value pack name>,
<value pack version>, <scenario name>, and
<configuration file identifier>.

This sub-option can only be used alongside the
following options:

e -rc, --reloadConf
The configuration file identifier is either:

e One of the keywords :

o filter

o mapper
o specific
o template

e the filename of a specific configuration
file

e the name of the template

If the keyword “specific” is used, all specific
configuration files are selected.

Table 5 - uca-ebc-admin tool sub-options

The uca-ebc-admin tool has some configuration properties defined in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file, but these
properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

uca.ebc.jmx.url Default value :
service\:;jmx\:rmi\://${uca.ebc.serverhost}/jndi/rmi\://$
{uca.ebc.serverhost}\:${uca.ebc.jmx.rmi.port}/uca-ebc

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

Table 6 - Properties for uca-ebc-admin in uca-ebc.properties file

2.2.4 uca-ebc-instance

The uca-ebc-instance command-line tool provides options to create, delete, list or
configure instances of UCA for EBC Server. This tool is not supported on Windows
platforms.

Instances are created inthe ${UCA_EBC_DATA}/instances directory. At
installation, a single instance is created. It is named “default”.

24

To execute the uca-ebc-instance tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-instance <options>

<options> is a list of valid options for the uca-ebc-instance tool

The following table lists the main options of the uca-ebc-instance tool:

-h

-a <instance-name>

-d <instance-name>

-r <old-name> <new-
name>

-s <instance-name>

This option displays the uca-ebc-instance tool
usage message

This option lists all available instances.

This option creates a new instance named
<instance-name>

&~ See Notes: (1) ()

This option deletes an existing instance named
<instance-name>.

This option renames an existing instance named
<old-name> to <new-name>. Note that <new-
name> should not already exist.

This option sets the default instance to use to be:

<instance-name>.

&~ See Note: (3)

Table 7 - Main options for the uca-ebc-instance tool

Notes

(") When creating a new instance, the root folder for the new instance is created.

This folder is referredto as ${UCA EBC INSTANCE} in this document.

(2) When creating a new instance, please make sure that there is no port conflict
with other applications running on your server.

(3) When no “-i” option is provided with the uca-ebc, uca-ebc-admin, uca-ebc-
injector, or the uca-ebc-backup tool, the default instance is used.

&~ please refer to chapter 3.1 “Multiple instances configuration” below for more
information on how to configure multiple instances of UCA for EBC.

2.2.5 uca-ebc-backup

This command-line tool provides the ability to backup and restore UCA for EBC
Server instances. This tool is not supported on Windows platforms.

To execute the uca-ebc-backup tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
S uca-ebc-backup <command> <options>

25

<command> isoneof [-b | -backup | -r | -restore | -1 | -list]

<options> is a list of valid options for the command

2.2.5.1 Backing up

When the —b | -backup option is given to the uca-ebc-backup tool, a backup of the
data directory for a specific instance is performed (excluding the logs and work
subdirectories). In order to do so, the uca-ebc-backup tool compresses the instance
directory hierarchy and stores the resulting file into a directory of the users’ choice.

If the UCA for EBC Topology Extension is installed along with UCA for EBC Server and
the neodj Server is configured as embedded, the neo4j subdirectory is also backed
up. The backup of the neodj subdirectory is done using the neo4j Enterprise backup
utility, which performs a full backup without acquiring any locks, thus allowing for
continued operations on the neo4j instance.

Please make sure that UCA for EBC server is up and running when neo4j is
embedded before proceeding with a backup. (= See Note below)

To back up a UCA for EBC instance, please execute the following command:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -b|-backup <options>

The following table lists the options of the uca-ebc-backup tool for backing up UCA
for EBC instances:

-h This option displays the uca-ebc-backup tool usage
message

-i <instance-name> This option specifies the instance of UCA for EBC to
backup. If it is not specified, the default instance is
used.

-fl-from <directory> This option specifies the UCA for EBC data directory.
If it is not specified, the ${UCA_EBC_DATA} directory
is used.

-tl-to <directory> This option specifies the directory where to store
the backup file. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

-n|-name <name> This option specifies the name of the file to use as
the backup file. If it is not specified, the name of the
file is generated automatically using the following
pattern: %instance-%date-%time.

Table 8 - Options for backing up UCA for EBC instances using the uca-ebc-
instance tool

Note

When UCA for EBC is not running during the backup procedure, it is not a problem: a
warning is displayed but the neodj database is backed up properly.

Important: if your neodj database is located outside of the ${UCA_EBC_INSTANCE}
directory (for example if you set the value of the uca.ebc.topology.location
property to /my-absolute-path in the ${UCA_EBC_INSTANCE}/conf/uca-
ebc.properties file), the backup tool will keep a copy in a subdirectory of the
${UCA_EBC_INSTANCE} directory

2.2.5.2 Restoring

When the —r | -restore option is given to the uca-ebc-backup tool, a specific
instance of UCA for EBC is restored from a compressed file previously created by
the uca-ebc-backup tool.

Restoring a backup file is only supported when UCA for EBC server is not running.
When UCA for EBC server is running, restoring a backup will result in unexpected
behavior.

Restoring a backup of a UCA for EBC instance results in the current configuration of
neo4j being replaced by the backup. (= See Note (") below)

To restore a UCA for EBC instance from a backup file, please use the following
command:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -r|-restore —name filename <options>

The following table lists the options of the uca-ebc-backup tool for restoring UCA
for EBC instance backup files:

-h This option displays the uca-ebc-backup tool usage
message
-n|-name <name> This option is mandatory and specifies the fully

qualified name of the backup file to restore.

-tl-to <directory> This option specifies the UCA for EBC data directory
where to restore the backup file. If it is not
specified, ${UCA_EBC_DATA} is used.

&~ See Note below

Table 9 - Options for restoring UCA for EBC instances using the uca-ebc-instance
tool

Note

M The restore mechanism does restore the neo4J DB in the
${UCA_EBC_INSTANCE}/neo4j directory which is the default location of the
neo4j DB.

If you have the location of neo4j DB outside of ${UCA_EBC_INSTANCE]} (for
example if you specified uca.ebc.topology.location=/my-absolute-path in the
uca-ebc.properties file), you will have to manually copy the contents of the
neodj subdirectory to the /my-absolute-path directory.

@ Be careful! The backup file contains the instance name. If an instance with the
same name exists when an instance is restored, the existing instance will be
overwritten.

27

However, please note that the current logs and work directories are not
removed.

2.2.5.3 Listing the available backups

When the -1 | -list option is given to the uca-ebc-backup tool, all compressed
backup files are listed.

It is helpful to run this command before restoring a backup to know what backup
files are available. It may also be helpful if you need to do some cleanup of the
backup files.

The list is sorted by creation time. It is up to the end-user to clean the backup
directory when backup files become irrelevant and should be removed.

To list all available UCA for EBC instance backup files, please use the following
command:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ _uca-ebc-backup -1l|-list <options>

The following table lists the options of the uca-ebc-backup tool for listing available
backup files:

-h This option displays the uca-ebc-backup tool usage
message
-fl-from <directory> This option specifies the directory where the backup

files are stored. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

Table 10 - Options for listing the available UCA for EBC instance backups using
the uca-ebc-instance tool

2.3 UCA for EBC User Interface

In addition to the command-Lline tools, the web-based user interface of UCA for EBC
also provides administration, monitoring and troubleshooting capabilities for the
UCA for EBC product.

Note

%~ For more information on how to configure UCA for EBC at the value pack or

scenario level please refer to: [R3] HP UCA for EBC User Interface Guide[R2] HP UCA
for EBC Value Pack Development Guide

28

Chapter 3

UCA for EBC Configuration

UCA for EBC can be configured using properties located in configuration files.

The following chapters describe all the properties that can be set to configure UCA
for EBC at the application level using configuration files (usually located in the
${UCA EBC INSTANCE}/conf/folder). Additional configuration can be
performed at the value pack and scenario level.

Note

~ For more information on how to configure UCA for EBC at the value pack or
scenario level please refer to: [R2] HP UCA for EBC Value Pack Development Guide

3.1 Multiple instances configuration

Since UCA-EBC V2.0, it is possible to configure multiple instances on a same server.
There is a command line tool for managing those instances: uca-ebc-instance.
Please refer to Chapter 2.2.4 “uca-ebc-instance” for more information on how to
use this tool.

When creating a new instance of UCA for EBC, the port numbers specified in the

${UCA EBC INSTANCE}/conf/uca-ebc.properties fileare
automatically tuned so that they do not interfere with ports of existing instances of
UCA for EBC. They are adjusted based on default port numbers delivered in the
${UCA EBC HOME}/defaults/conf/uca-ebc.properties file.

For example, such ports may have following values (the port numbers in the
example below correspond to a 3" instance of UCA for EBC):

uca.ebc.jms.broker.port=61866
uca.ebc.jmx.rmi.port=1300
uca.gui.port=9088

However, you have to make sure that the above ports do not conflict with ports
used by other applications on your server.

If you have added other ports in your properties (for example for topology
extension), please make sure to tune these ports accordingly.

uca.ebc.topology.webPort=7675

In the same way, the port numbers inthe ${UCA EBC INSTANCE}/conf/uca-
ebc-1og47j.xml file are automatically tuned.

The Port property for the CHAINSAW appender specified in the
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml fileshouldbe
different for each instance of UCA for EBC:

29

| <param name="Port" value="4745"/>

3.2 Configuration files

3.2.1 uca-ebc.properties file configuration

The s{UCA EBC INSTANCE}/conf/uca-ebc.properties file contains the
different properties that can be set for an instance of UCA for EBC Server.

The following tables list the different properties that can be set:

Property name Explanation

uca.ebc.serverhost Default value : localhost

This property defines the local host name as used by the
JMX (administration) and JMS (alarm Broker) connection
bindings.

The value ‘localhost’ is usually enough, but it can be
changed to enter the host fully qualified DNS name or an
IP address (especially if the server has several IP
interfaces), depending on whether UCA for EBC Server
should bind to one specific DNS Name/IP Address or all
DNS Names/IP Addresses configured on the server.

uca.ebc.jms.broker.port Default value : 61666
The port used by the JMS Broker.

The value of this property can be set to an alternate port
number in case of port number conflict with another
application on your system.

uca.ebc.jmx.rmi.port Default value : 1100
The port used by RMI for JMX connections.

The value of this property can be set to an alternate port
number in case of port number conflict with another
application on your system.

uca.gui.port Default value : 8888

The local port number used by the embedded UCA for
EBC User Interface web server. The value of this property
can be set to an alternate port number in case of port
number conflict with another application on your
system.

The URL for connecting to the UCA for EBC User interface
is the following:

lhttp://<hostname or IP address>:<port #>/uca]

<hostname or IP address> is the actual hostname (full
DNS name) or the IP address of the UCA for EBC Server
system.

<port #> is the port number for UCA for EBC User
Interface set by the uca.gui.port property (By default:
8888 for the default instance of UCA for EBC).

30

Table 11 - Host and Port # properties in the uca-ebc.properties file

If you change the uca.ebc.serverhost, or uca.ebc.jms.broker.port properties, the
UCA for EBC Channel Adapter configuration must be changed accordingly. The uca-
ebc-ca.properties file of the UCA for EBC Channel Adapter must be checked and
changed if required:

UCA EBC Server to connect to
uca.ebc.jms.broker.host=1ocalhost
uca.ebc.jms.broker.port=61666

The default location for the uca-ebc-ca.properties file of the UCA for EBC Channel
Adapter is the following:

/var/<0SS Open Mediation root
directory>/containers/instance-0/ips/uca-ebc-ca-
3.2/etc/uca-ebc-ca.properties

Where:

e <0SS Open Mediation root directory> stands forthe 0SS Open
Mediation installation root directory, which, by default, translates to the
/opt/openmediation-71 directory

e instance-0isthe 0SS Open Mediation container instance folder name.
Depending on you configuration, the container number could be different than
0. If this is the case, please adjust the name of the container instance folder
accordingly

&~ For full details on how to change this file, please refer to: [R4] HP UCA for EBC
Installation Guide.

31

Property name Explanation

uca.gui.webapp Default value: webapp/uca-expert-ui.war

The location of the Web application ARchive file of the
UCA for EBC User Interface.

uca.ebc.rest.api Default value: webapp/uca-ebc-rest-api.war

This value is by default commented. This is the
location of the Web application ARchive file of the
UCA for EBC REST Interface.

¥~ For more information, please refer to: [R1] HP
UCA for EBC Reference Guide

Table 12 - Web GUI properties in the uca-ebc.properties file

Property name Explanation

collector.logger.enabled Default value: false

When set to true, collector logging is enabled. All
alarms collected by UCA for EBC, i.e. alarms sent by
0SS Open Mediation to UCA for EBC and alarms
injected into UCA for EBC using the uca-ebc-injector
tool, will be logged to a file at the following location:
S{UCA EBC INSTANCE}/logs/uca-ebc-
collector.log

collector.measurementr Default value: false

S When set to true, event rate measurement is enabled

for the UCA for EBC collector component. The
collection statistics data are available either through
JMX (using the standard Java jconsole or jvisualvm
tool for example), the uca-ebc-admin tool, or the UCA
for EBC User Interface.

collector.messages.valid Default value: true

1 When set to true, validation of all events (Alarms)

coming into UCA for EBC is enabled. Validation errors
are reported in the statistics of the Collector both at
the Java JMX Console and UCA for EBC User Interface.

Validation errors can occur when Alarms that do not
conform to the UCA for EBC Alarm XML schema are
received by UCA for EBC.

%~ For more information on the UCA for EBC Alarm
XML schema, please refer to: [R1]1 HP UCA for EBC
Reference Guide.

Table 13 - Collector properties in the uca-ebc.properties file

Property name Explanation

action.threads

action.timeout

Default value: 20

This property defines the size of the thread pool size
(in number of threads) of the UCA for EBC Action
Manager component. These threads are in charge of
processing asynchronous actions. This property can
be tuned up/down in case you need more/less
threads to process a large/small number of
asynchronous actions in parallel.

Default value: 60000

This property defines the default timeout for actions
(in milliseconds) processed by the UCA for EBC Action
Manager component. If an action exceeds the
timeout, then the action fails with a status
explanation indicating that a timeout has run out.

This default action timeout can be overwritten for any
single action by using the public void
setActionTimeout (int actionTimeout)
method of any Action object. The actionTimeout
parameter is also in milliseconds.

Table 14 - Action Manager properties in the uca-ebc.properties file

engine.logger.enabled

engine.logger.interval

Default value: false

When set to true, scenario-specific Drools engine
logging is enabled. This setting affects all scenarios
of all value packs.

Scenario-specific engine log files are named
logEngine <scenario name>.logand are
located inthe ${UCA EBC INSTANCE}/logs
directory. Scenario-specific engine log files contain
standard Drools engine log entries specific to a
scenario.

These log files can be easily displayed in Eclipse IDE
using the Audit view, provided you have installed
the Drools Eclipse plugin. This view is show by
default if you switch to the Drools perspective.

Default value: 1000

This property represents the interval (in
milliseconds) at which engine log entries are written
to the scenario-specific engine log.

Table 15 - Rule Engine logger properties in the uca-ebc.properties file

The uca-ebc. properties file also contains topology related properties. These
properties, prefixed either uca.ebc.topology or neodj, are related to the UCA for
EBC Topology Extension product. These properties are described in the UCA for EBC

Topology Extension guide.

33

¥~ For more information on how to set these properties to configure the UCA for
EBC Topology Extension product, please refer to: [R5] HP UCA for EBC Topology
Extension Guide.

The property named uca.ebc.version in the uca-ebc. propertiesis no more
used by the UCA for EBC Server product: 3.2.

Note

UCA for EBC Server must be restarted in order for any change to the uca-
ebc.properties file to be taken into account.

For non-stop update of some of the properties, you can use the uca-ebc-admin
tool, or the JMX interface (with jconsole or jvisualvm).

& Pplease see section 2.2.3 “uca-ebc-admin” for more information on the list of
properties that can be updated using the uca-ebc-admin command-line tool.

& Pplease see section 5.1.3 “JMX Console” for more information on the list of
properties that can be updated at the Java JMX Console.

3.2.2 ActionRegistry.xml file configuration

UCA for EBC value pack scenarios have the ability to send action requests to be
executed by the mediation layer associated with UCA for EBC Server: 0SS Open
Mediation V7.1.

The actions are executed by a Channel Adapter (specific to a target application) on
the mediation layer. Action replies are then returned to the scenario that sent the
action requests.

UCA for EBC value pack scenarios use web services to communicate with the Action
Service web service of a Channel Adapter, typically the UCA for EBC Channel
Adapter.

For these actions to be properly routed to the mediation layer and then to the
correct Channel Adapter and target application, the file

${UCA EBC INSTANCE}/conf/ActionRegistry.xml mustbe configured
correctly.

34

<ActionRegistryXML zmlns="http://registry.action.mediation.uca.hp.com/ ">

<MediationValuePack MvpHame="temip" MvpVersion="1.1"
url="http://localhost:26700/uca/mediation/action/ActionService ?W5DL"
JRL="failover://tcp://localhost:10000">

<Action actionReference="TeMIP AC Directives localhost">
<ServiceNameraoDirective</ServiceName>
<HNmsName>localTeMIP</NmsName>

</hction>

<Action actionReference="TeMIP TT Directives localhost">
<ServiceName>ttDirective</ServiceName>
<HNmsName>localTeMIP</NmsName>

</RAction>

I N
ok Wk P O W -] e s W R

16 <hction a ference="TeMIP FlowManagement">

17 <ServiceName>subscriptionManagement</Servicelame:>
B8 <NmsName>localTeMIP</NmsName:>

1s </hction>

20 </MediationValuePack>

21

22 <MediationValuePack M e="exec" MvpVersion="1.1"
23 url="http://localhost:26700/uca/mediation/action/ActionService ?WSDL"
24 br L="failover://tcp://localhost:10000":>

25

28 <Action actionReference="Exec localhost">

27 <ServiceName>commandsExecution</ServiceName>

28 <NmsName>»localhost</NmsName:

23 </hction>

30 </MediationValuePack>

31

32 </BctionRegiscryXML>

Figure 1 - ActionRegistry.xml file

The default configuration for this file can be retrieved from the
${UCA EBC HOME}/defaults/conft folderin case you want to revert back to

the default configuration.

The ActionRegistry.xml fileis an UCA for EBC application level configuration
file. It is shared by all UCA for EBC value packs running on UCA for EBC Server.

The ActionRegistry.xml file defines “mediation value packs”, and “action
references” for these mediation value packs. The following sections will describe in
detail how to configure the ActionRegistry.xml file in terms of “mediation
value packs”, and “action references”

Note

UCA for EBC Server must be restarted in order for any change to the
ActionRegistry.xml file to be taken into account, unless you use the Java
JMX Console to refresh the UCA for EBC Action Manager with the contents of the
ActionRegistry.xml file.

&~ Pplease see 5.1.3.1 “Monitoring UCA for EBC internal components” to learn how

to refresh the UCA for EBC Action Manager with the contents of the
ActionRegistry.xml file using the Java JMX Console.

3.2.2.1 Defining Mediation Value packs

Each “mediation value pack” defined in the ActionRegistry.xml file describes
the properties of a gateway to access the Action Service web service on a UCA for
EBC Channel Adapter deployed on 0SS Open Mediation V7.1.

This gateway will be able to process action requests on the mediation layer by
forwarding the action requests to the proper Channel Adapter on 0SS Open
Mediation V7.1 for processing.

35

Each “mediation value pack” defined in the ActionRegistry.xml file has the
following properties:

e MvpName: You can give any value to this property (the value is not bound to
anything). However, it is recommended to use the name of the Channel
Adapter that will be targeted by the action requests. For example:

o “temip” (as in TeMIP Channel Adapter) or
o “exec” (as in Exec Channel Adapter)

e MvpVersion: You can give any value to this property (the value is not bound
to anything). However, it is recommended to use the version of the
Channel Adapter that will be targeted by the action requests. For example:

o 1.0o0r
o 2.1or
o etc...

e brokerURL: This property contains the correct URI for connecting to the JMS
Broker of the 0SS Open Mediation V7.1 container instance that contains a
UCA for EBC Channel Adapter. By default the port number of the JMS
Broker of 0SS Open Mediation V7.1 container 0 is 10000. To verify what
port number is used for your 0SS Open Mediation V7.1 container instance,
please check the value of the activemq.port property in the
/var/opt/openmediation-V71/containers/instance-
<instance number>/conf/servicemix.properties file.

JMS Broker URIs have the following pattern:

ltep://<hostname or IPaddress>:<porti#>| or

failover://tcp://<hostname or IPaddress>:<porti#>| for the failover
URI

where:

<hostname or IP address> is the actual hostname (full DNS name) or the IP
address of the 0SS Open Mediation V7.1 system.

<port #> is the port number of the JMS Broker of the 0SS Open Mediation
V7.1 container instance that contains a UCA for EBC Channel Adapter. The
default port # is 10000 for container instance 0.

The brokerURL property is used to connect to the Alarms JMS topic of the
UCA for EBC Channel Adapter when using the standard UCA for EBC
OpenMediationAlarmForwarder Java class for forwarding alarms to 0SS
Open Mediation V7.1.

%~ For more information on how to forward alarms, please refer to: [R2] HP UCA
for EBC Value Pack Development Guide

o url: This property contains the correct URL for connecting to the Action
Service web service on a UCA for EBC Channel Adapter. For example, if the
UCA for EBC Channel Adapter is on localhost and uses the default port
number for its Action Service web service:

http://localhost:26700/uca/mediation/action/ActionService?WSDL

An incorrect value for the url property will result in action requests not
being able to be processed on the mediation layer. Please verify this url
using a web browser before using it in the ActionRegistry.xml file.

Note

Action Service web service URLs have the following pattern:

http://<hostname of
IPaddress>:<port#>/uca/mediation/action/ActionService?WSDL|

<hostname or IP address> is the actual hostname (full DNS name) or the IP
address of the UCA for EBC CA system.

<port #> is the port number for UCA for EBC CA Action Service, 26700 by
default. This port number is set in the <0SS Open Mediation variable root
directory>/containers/instance-<container instance number>/ips/uca-ebc-
ca-<UCA for EBC CA version>/etc/action-service.xml file (see the value of
the locationURI property of the cxfbc:consumer XML entity).

<0SS Open Mediation variable root directory> usually translates to
/var/opt/openmediation-V71.

Two mediation value packs are defined by default in the ActionRegistry.xml file:

e A “temip” services mediation value pack, providing a gateway to a TeMIP
Channel Adapter for executing TeMIP Alarm Object directives, TeMIP
Trouble Ticket directives, and alarm collection flow
creation/deletion/resynchronization

e An “exec” services mediation value pack, providing a gateway to an Exec
Channel Adapter for executing command-line interface
executables/commands

Each mediation value pack can contain one or more action references. Action
references are explained in the next section.

3.2.2.2 Defining Action References

Action references define references to be used in the Drools rules files associated
to scenarios of UCA for EBC value pack for executing synchronous/asynchronous
action on products (TeMIP for example) connected to 0SS Open Mediation V7.1 via
their own Channel Adapter.

Below is an example of how action references can be used in rules files (we assume
in this example that an action reference called “TeMIP_AQ_Directives_impot” has
been defined in the ActionRegistry.xml file)

Basically you need to write the following code in your rules file:

Action action = new Action("TeMIP AO Directives impot");

The action reference called “TeMIP_AQ_Directives_impot” is used when
creating an Action Java Object in the rules files.

Once an Action object is created, you can specify the parameters that will
define what action to perform, in the following example a TeMIP Alarm
Object directive:

action.addCommand ("directiveName", "ACKNOWLEDGE") ;
action.addCommand ("entityName", a.getIdentifier());

37

| action.addCommand ("UserId", "UCA EBC");

Then, you need to execute the Action. Both synchronous and asynchronous
actions are possible:

Either:

//synchronous execution

action.executeSync () ;

Or:

//asynchronous execution
action.executeAsync (AODirectiveKey.ENTITY NAME) ;

~ For more information on synchronous and asynchronous actions

(including how to use synchronization keys for asynchronous actions),
please refer to: [R1] HP UCA for EBC Reference Guide.

Each “action reference” defined in the ActionRegistry.xml file has the following
properties:

o actionReference: this is the name of the action reference to use in the
Drools rules files associated with scenarios of UCA for EBC value pack

An incorrect value for the actionReference property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the actionReference property is in line with the action
reference used in the Drools rules files of the scenarios of your UCA for EBC
value pack(s).

o serviceName: this is a valid name of service (type of action) implemented by
the target Channel Adapter (TeMIP CA, Exec CA, etc...). This service name is
determined by the target Channel Adapter and the services it provides. For
example:

o The TeMIP Channel Adapter provides the following services:

= TeMIP_AO_Directive, for executing Alarm Object (AO)
directives

= TeMIP_TT_Directive, for executing Trouble Ticket (TT)
directives

= subscriptionManagement, for executing alarm collection
flow creation/deletion/resynchronization

o The Exec Channel Adapter provides the following services:

= Exec, for executing command-line interface
executables/commands

An incorrect value for the serviceName property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the serviceName property is valid for the target Channel
Adapter by reviewing the target Channel Adapter documentation.

e NmsName: hostname or IP address of the system targeted by the target
Channel Adapter. This property is used for information only. It is not bound
to anything.

38

3.2.3 uca-ebc-logdj.xml file configuration

The s{UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml fileis the Log4)
configuration file for the whole UCA for EBC application. It is a standard Apache
Log4J configuration file.(")

This file contains three main sections where the following items are defined:

¢ Appenders: appenders mainly define where the log messages are sent, and
the pattern used for logging the messages. There are three main
appenders defined.

o CONSOLE: for logging to the console

o FILE: for logging to the 5 {UCA EBC INSTANCE}/logs/uca-
ebc. logfile

o DB:for logging to a database. This log database is used for
displaying the logs on the UCA for EBC User Interface

In addition to the three main appenders, a sample CHAINSAW appender is
also provided for integration with the Apache Chainsaw GUI-based log
viewer. (?)

¢ Loggers: loggers are defined by Java package names. Each logger defines its
own log level and appender references. The loggers are grouped into
several sections (the different sections are identified by comments in the
file):

o Detailed Traces for Value Pack Scenarios
o Detailed Traces for UCA Main Components
o Detailed Traces for UCA Scenarios

o Detailed Traces for UCA Components

o Detailed Traces for UCA ClassLoader

o Third Party Products Internals

¢ Root: the root section defines the default log level and the default appender
references to use for logging

You can make your own changes to the ${UCA EBC INSTANCE}/conf/uca-
ebc-1og4j.xml file, for example:

¢ Modifying existing appenders or creating new ones

¢ Modifying existing loggers: changing the log level or the appender
references

¢ Adding new loggers, for 3" party products for example
¢ Adding new loggers for your own scenarios

¢ Modifying the default log level and appender references in the root section
of the file

Once you have made changes to the $ {UCA EBC INSTANCE}/conf/uca-
ebc-1og47j.xml file, you either need to restart UCA for EBC Server or reload the
Log4) configuration at the command-line using the uca-ebc-admin tool, the Java
console or the UCA for EBC User Interface.

There are several levels of logging provided by UCA for EBC: standard application
logging, and scenario specific rule logging. (3)

39

Log files (both standard application log file, and scenario specific log files) are
stored inthe ${UCA EBC INSTANCE}/1logs directory or at the UCA for EBC
User Interface.

Notes

(') ¥~ Pplease see http://logging.apache.org/log4j/1.2/ to learn more about Apache
Log4J configuration files.

() ¥ Please see http://logging.apache.org/chainsaw/index.html to learn more
about Apache Chainsaw.

(3) ¥~ Please see section 6.1 “UCA for EBC Logging Mechanism” to learn about the
different levels of logging provided by UCA for EBC (standard application logging,
and scenario specific rule logging) and to learn how to enable/disable and configure
these logs.

3.2.4 Additional configuration files

Some configuration files are present in addition to the

${UCA EBC INSTANCE}/conf/uca-ebc.properties,
${UCA_EBQ_INSTANCE}/conf/ActionRegistry.xml,and
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml files.

3.2.4.1 UCA EBC Spring Framework configuration files

UCA for EBC is integrated with Spring Framework. The main components of UCA for
EBC are defined using Spring Framework. Three configuration files located in the
${UCA EBC HOME}/conf directory are present by default:

e application-context.xml
e main-context.xml
These files are for INTERNAL USE ONLY and should not be modified.

However, in rare case, for instance when you need to support storing events into a
single DB for multiple Value Packs, you may add some Spring beans in those files.

3.2.5 How to revert back to the default configuration files

Areference copy of each of the configuration files present in the
${UCA EBC INSTANCE}/conf folder canbe foundin the
${UCA EBC HOME}/defaults/conf folder.

In case you want to revert back the default configuration of any of the configuration
files presentinthe S {UCA EBC INSTANCE}/conf folder, youjust need to copy
the reference copy of the configuration file from the

${UCA EBC HOME}/defaults/conf folder to the

${UCA EBC INSTANCE}/conf folder.

Note

UCA for EBC Server must be restarted in order for any change to the configuration
filesinthe ${UCA EBC INSTANCE}/conf folder to be takeninto account.

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/chainsaw/index.html

3.3 High-Availability (HA) configuration

3.3.1 Simple cluster configuration using NFS

The simplest cluster configuration is a set of (minimum 2) members UCA for EBC
servers accessing the same Storage Area Network providing access to a single data
storage.

To setup such a cluster configuration, the following steps are required:

1. Install UCA for EBC using the -d option to specify the same “data” directory. &
See Note (")

For example, given that /shared/UCA-EBCis the NFS mount point for the UCA
for EBC data directory, you need to execute the following command on all servers:

[root] # install-uca-ebc.sh -d /shared/UCA-EBC

On first installation of UCA for EBC (on server1), the subdirectories under
/shared/UCA-EBC are automatically created. On subsequent installations (on
server2 and +), the subdirectories are not recreated because they already exist.
Using this method, you can install an extra server even if UCA for EBC is running on
another server.

2. Start UCA for EBC on the first server. = See Note (?)

[ucal@serverl] # uca-ebc start

SAN

Y

/shared/UCA-EBC

Serverl Server2

3. Whenserver1 is to be stopped for some reason, then server2 is able to recover
the work, once started.

[ucal@server2] # uca-ebc start

Notes

(") It is mandatory that the “uca” user account used to run UCA for EBC has the same
uid / gid on all the servers sharing a same data directory. If this is not the case, UCA
for EBC will not be able to recover from one server to the other due to file
ownership issues. It is therefore recommended to use a NIS user account across
servers.

(%) Log and work files are stored in a shared NFS data storage. It is not supported to
have more than 1 UCA for EBC server instance running on the same data storage
due to possible file synchronization issues.

41

() ¥~ For more information on High-Availability setup, please refer to: [R1] HP UCA
for EBC Reference Guide

3.3.2 Neodj database High-Availability (HA) configuration for
Topology Extension

The simplest configuration of neo4j is to have the database server embedded in
UCA for EBC server. As such, it can run only on a single machine, accessible through
a single port. When configured as embedded, the database is stored under the
${UCA EBC INSTANCE}/neo4j directory.

When a simple cluster configuration is used along with an embedded neo4;j
topology, the High-Availability (HA) mechanism is implemented by the shared
location of the ${UCA EBC INSTANCE} directory which includes the neo4j
database. When a member of the cluster starts, it inherits the neo4j database state,
i.e. the topology state, from the last cluster member that stopped.

This solution does not use the HA mechanism of neo4;j. (= see Note (') below).

To deploy the UCA for EBC database, i.e. the neodj database, in a multiple machine
setup, you have to tune the uca.ebc.topology property in the
S{UCA EBC INSTANCE}/conf/uca-ebc.properties file, as follows:

uca.ebc.topology=external

This property is set by default to “embedded” but it needs to be changed to
“external” for HA configuration. (= see Note (") below)

Neo4j HA can be set up to accommodate differing requirements for load, fault
tolerance and available hardware. The typical setup when running multiple Neo4;j
instances in HA mode is: (= see Note (2) below)

= a HTTP REST load-balancer, namely HA proxy
= asingle Neo4j master
= 0 or more Neodj slaves

* amechanism for master election, namely a Coordinator cluster (= see Note
(3) below)

To configure UCA for EBC to use a Neo4j HA cluster, you need to setup the
uca.ebc.topology.serverhost and uca.ebc.topology.webPort properties in the
${UCA EBC_INSTANCE}/conf/uca-ebc.propertiesfiletobeequal to
the Neo4J HA proxy configuration. For example:

uca.ebc.topology.serverhost=server3.local.domain
uca.ebc.topology.webPort=7474

Then, you have to configure the Neo4j cluster to run in HA mode. Please refer to the
Neodj high-availability setup tutorial for more information. (= see Note (%) below)

42

Notes

(1) The “embedded” value for the uca.ebc.topology property in the
${UCA EBC_INSTANCE}/conf/uca-ebc.properties file does not
currently support the neo4j HA mode.

(2) Suggested reading: http://docs.neo4j.org/chunked/stable/ha.html. Please note
that only neodj-enterprise edition supports HA features.

(3) The Coordinator function is based on Apache Zookeeper service:
http://hadoop.apache.org/zookeeper/

(4) The Neodj high-availability setup tutorial is available at the following URL:
http://docs.neodj.org/chunked/stable/ha-setup-tutorial.html

3.4 Backup and restore

3.4.1 Standalone UCA for EBC

A standalone UCA for EBC server is a server running on a single machine. If the UCA
for EBC Topology Extension is installed and configured, the neo4j server is running
embedded within UCA for EBC Server. (+ see Note below)

On both HP-UX and Linux:

To perform a backup/restore, please use the uca-ebc-backup command line tool
(Please refer to Chapter 2.2.5 “uca-ebc-backup” for command usage).

On Windows:

To perform a backup/restore, as no command line tool is provided, please use the
following procedure:

For backups:
1. ¢d SUCA EBC DATA%

2. zip all directories (except logs and work) into a backup .zip file, and storeitina
safe place

For restores: (Please make sure that UCA for EBC is not running)
1. cd SUCA EBC DATA%
2. remove all directories (except logs and work)

3. unzip the backup .zip file that was created during the backup

Note

neodj embedded server online backup feature must be activated.

This is done by setting the neodj.config.online_backup_enabled property to true
inthe ${UCA EBC INSTANCE}/conf/uca-ebc.properties configuration
file.

3.4.2 Clustered UCA for EBC

A clustered UCA for EBC server is a set of multiple servers running on separate
machines but using the same data directory under NFS. This is described in Chapter
3.3.1 Simple cluster configuration using NFS”.

43

http://docs.neo4j.org/chunked/stable/ha.html
http://hadoop.apache.org/zookeeper/
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

As data is stored on a unique place, it is only necessary to perform the backup once
for the cluster, on any machine. To perform a backup/restore, please use the
procedure explained above (in Chapter 3.4.1 “Standalone UCA for EBC”) which is
applicable in a clustered context as well.

3.4.3 UCA for EBC with external topology server

A UCA for EBC server using an external neodj topology server has to be backed up
(or restored) in two steps.

3.4.3.1 First step: backup/restore of UCA for EBC

To backup/restore UCA for EBC, use the procedure explained in Chapter 3.4.1
“Standalone UCA for EBC” above. This procedure will back up everything that is
stored in the UCA for EBC instance directory, except the neo4j database, which is
external.

3.4.3.2 Second step: backup/restore of neodj database

When neodj server is configured to be external to UCA for EBC, it is necessary to
backup/restore this external machine separately. Please be aware that the neo4j
backup utility is only available when using the Enterprise Edition of Neo4j (= see
Note (') below).

Please follow the steps described below to perform a backup/restore of the neo4j
database.

For backups:

¢ Do a full backup using the neodj-backup command line tool on a safe new
directory (= see Note (") below)

For restores:

e Restore the backup by replacing the current database (usually stored in
${NEO4J HOME}/data/graph.db) by the contents of the directory
generated during the backup.

Notes

(1) The neodj-enterprise edition supports online backup only if the neodj server has
been launched with the online_backup_enabled property set to true.
Suggested reading: http://neo4j.com/docs/1.9/operations-backup.html

(2) Note that if neodj has been configured in High-Availability (HA) mode, you'll
have to specify the -cluster option as specified at the following URL:
http://neo4j.com/docs/1.9/backup-ha.html

http://neo4j.com/docs/1.9/operations-backup.html
http://neo4j.com/docs/1.9/backup-ha.html

Chapter 4

UCA for EBC Monitoring

4.1 Monitoring the alarm flow in real-time

The purpose of monitoring the alarm flow is to offer any integrator and/or rules
designer (at development time) or any user (in production) the capability to better
understand what happens in the UCA for EBC engine (in particular in each rule
engine/working memory of a scenario).

A UCA for EBC solution can be complex including several values packs, each of them
containing several scenarios. At each level, filtering at the scenario level indicates
the scope of interest of the scenario, in terms of what type of events the scenario
will process.

Monitoring the alarm flow is key to a better understanding of what goes on inside
UCA for EBC in terms of processing of the alarm flow in real-time, when a complete
UCA for EBC solution, with possibly several value packs and scenarios, is deployed.

Monitoring the alarm flow involves taking measurements of the alarm flow at
several key processing points in the UCA for EBC solution:

o At the UCA for EBC Collector layer, i.e. alarm collection layer (this component
is the entry point for alarms/events into UCA for EBC)

e At the UCA for EBC Dispatcher layer, i.e. alarm dispatcher layer (this
component processes alarms/events sent by the UCA for EBC Collector and
dispatches them to value packs and scenarios)

e At the Value Pack layer
e At the Scenario layer, i.e. the Drools engine layer

The following figure explains the “points-of-control” where measurements of the
alarm flow are performed:

45

Y Alarm filtering, compression, and life cycle

D Alarm queue
- Thread -
. Value ack 1
®et @ g’ Alarms/Events internal architecture p

-
Scenario Z

Collector is 25 rule engine
Incoming ,r' —
- Scenario A
rule engine

Alarms/Event
Scenario B
i rule engine

i Scenario Z
rule engine

Collector layer Dispatcher layer Value pack layer Scenario / Rule engine layer

Validation of incoming Dispatching of
Alarms/Events Alarms/Events

Figure 2 - UCA for EBC — Monitoring the Alarm Flow

Monitoring of the alarm flow is performed at the Collector layer, Dispatcher layer,
Value Pack layer and Scenario / Rule engine layer is shown in the above figure.

These measurements of the alarm flow are presented as statistics, and counters,
and can be displayed both at the Java JMX Console and at the UCA for EBC User
Interface (in the Troubleshooting / Statistics panel).

The following sections describe, for each layer of the UCA for EBC product, the
different ‘points-of-control’ where statistics about the alarm flow are available.
These statistics can help developers and integrators better understand how
scenarios consume the input Event/Alarm stream. Monitoring these statistics can
provide insight into the internal processing of a scenario in real time that can help
troubleshooting issues or possibly lead to improvements in terms of performance.

Note

" For more information on the UCA for EBC User Interface, please refer to: [R3]
HP UCA for EBC User Interface Guide

&~ Pplease see section 5.1.3 “JMX Console” for more information on the statistics,
and counters displayed at the Java JMX Console.

4.1.1 Collector layer

The Collector component is responsible for receiving and validating incoming
Events/Alarms from the mediation layer (0SS Open Mediation V7.1) and forwarding
them to the next layer (the Dispatcher layer). The following indicators can help
monitoring the alarm flow at the Collector layer in real-time:

¢ How many objects (alarms) were received since startup
o The last time an object (alarm) was received

e How many errors occurred during alarm validation

46

e The last time an error occurred during alarm validation

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (in the Troubleshooting / Statistics panel).

" For more information on the UCA for EBC User Interface, please refer to: [R3]
HP UCA for EBC User Interface Guide

4.1.2 Dispatcher layer

The Dispatcher is responsible for storing incoming events (Alarms), analyzing and
dispatching these events to the running value packs and scenarios. The following
indicators can help monitoring the alarm flow at the Dispatcher layer in real-time:

e Current number of objects (alarms) dispatched
¢ Last time an object (alarm) has been dispatched
e Rate of alarms reception

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.3 Value Pack layer

Additional statistics regarding the alarm flow are available at the Value Pack layer:
e How many objects (alarms) were received since startup (per alarm type)
e Last time an object (alarm) was received
e Alarminput rate

e Percentage of events received by the Value Pack compared to the total of
events received by the UCA for EBC Dispatcher

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.4 Scenario/Engine layer

Additional statistics regarding the alarm flow are available at the Scenario (Drools
engine) layer:

e Number of facts* inserted into Working Memory since startup
e Current number of facts* in real-time

e Last time an object (alarm) was injected, retracted, modified in Working
Memory

e Number of facts* retracted from the Working Memory since start-up
e Number of facts* modified in Working Memory since start-up

e Rate of alarms reception

47

e Percentage of events inserted into Working Memory compared to the total
of events received by the Scenario (this indicator measures what
percentage of incoming events are filtered out by the scenario)

* Facts are Drools Working Memory objects. Once any Java object is inserted into
Drools Working Memory, it becomes a “Fact”.

Notes

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

48

Chapter 5

UCA for EBC Troubleshooting

5.1 Troubleshooting tools

Below is the list of tools that you can use to troubleshoot UCA for EBC.

5.1.1 Logfiles

Log files can be of great help when troubleshooting issues with UCA for EBC. UCA
for EBC log files are located inthe S {UCA EBC INSTANCE}/logs directory.

You can view the log files directly on the file system using any text file editor or you
could also use the UCA for EBC User Interface to view the logs. This latter method
for viewing the logs has the advantage of providing easy navigation and filtering
capabilities. The UCA for EBC application log can also be cleaned to focus on new log
messages only.

Configuration of the logs is driven by the content of the
${UCA EBC_ INSTANCE}/conf/uca-ebc-log4j.xml file (7). Several types
of logs are available, both at application level and at scenario level (2).

Note

(') F Please refer to section 3.2.3 “uca-ebc-log4j.xml file configuration” to learn
more about the configuration of the $ {UCA EBC_INSTANCE}/conf/uca-
ebc-log4j . xml file.

(2) ¥~ Please see section 6.1 “UCA for EBC Logging Mechanism* to learn about the
different levels of logging provided by UCA for EBC, how to enable/disable and how
to configure these logs.

Recommendation: logging has an impact on performance. To avoid issues, please
do not use too much logging on a production environment.

5.1.2 UCA for EBC Graphical User Interface
The UCA for EBC User Interface provides troubleshooting tools.

At each level, be it application level, value pack level or scenario level, a
troubleshooting panel is provided that contains information that will help to
troubleshoot issues with the UCA for EBC application, a specific value pack or a
scenario.

49

The following screenshot shows Troubleshooting/Log panel at application level:

' uca expert - uca SRS e AR — 2 - - [E=REE)
@Uv [&] http://10cain

J Favorites <5 @] Wel

pplication:Troubleshooting <[&[4[x][2 Hemt

& Google Traduction

Gallery » &)

2 v B -~ # v Pagev Safetyv Tools~ @~ & @

& UCA Expert - UCA Expert/Application/Troublesho...

v 4 UCAExpert Monitoring . Troubleshooting Tools.

& Application
£ Actions

action-0.11-SNAPSHC

‘alarms-flow-monitorin

fife-cycle-0.11-SNAPS

llef-example-0.10

% tet-example-0.11-SH 0~ imestamp | prionty. | category valuepal tivead | message

42357 2011-10-06 17:09:48.712 INFO com.hp.uca.ex. T-VPFi. Refzesh:

% pd-0.11-SNAPSHOT

42358 2011-10-06 17:09:48.728 INFO com.hp.uca.ex main

‘skeleton-project-0.10-|

42359 2011-10-06 17:09:50.289 INFO com.hp.uca.ex T-VFFi.. Refx,

‘skeleton-project-0.11-| 42380 2011-10-0

of skeleton-pro3

7.09:50.205 INFO com.hp.uca.ex T-VPFi.. Refreshing

on of action-0.11-3NAPSHOT

42361 2011-10-06 17:09:50.362 INFO com.hp.uca.ex TAVPFi.. Refreshing

42362 2011-10-06 17:09:50.414 INFO com.hp.uca.ex. TVPF £ pd-0.11-SNAPSHOT

703: display naf

42363 2011-10-06 17:09:50.461 INFO com.hp.uca.ex. main

42384 2011-10-06 17:09:50.461 INFO com.hp.uca.ex main

€ Local intranet | Protected Mode: Off A~ Ro% ~

Figure 3 - Troubleshooting/Log panel at Application level

Each troubleshooting panel at each level (application, value pack, and scenario)
contains two sub-panels:

= A “Statistics” subpanel that contains key performance indicators that help
understanding the behavior of UCA for EBC, a value pack or a scenario

= A“Logs” subpanel that displays the full UCA for EBC application logs, the
Value Pack logs or a scenario specific logs depending on the level.

50

The following screenshot shows Troubleshooting/Statistics panel at application
level:

[@ Uch Expert - UCh Expert/applcationTroubleshooting - Windows Intemet Explorer ||| = = o o e |

O = (2] ripsrtocaimost et Apphca leshoot ~| &[4[x |[2 #ptotranet se P~

Favorites - i3 i) Web ery v i) Suggested Sites v §3 Google Traduction

8 UCA Bxpert - UCA Expert/Application/Troublesho.. P2 v B) b v Pagev Ssfeyv Toosv @ £ M

v b UCA Expert
O Agpiication
action-0 11-SNAPSHOT

Monitoring Troubleshooting

alarms-fiow-monitoring-0. 1
fe-cycle-0.1-SNAPSHOT|
iet-example-0.10
let-example-0.11-SNAPSH
-0.11-SNAPSHOT

‘skelston-project-0.10-SNA|

s 3|3 3|3|3]|3]3

‘skelston-project-0.11-SNA|

(] Console

€& Local intranet | Protected Mode: Off a v Rue% -

Figure 4 - Troubleshooting/Statistics panel at Application Level

Note

%~ For more information on how to connect to the UCA for EBC User Interface or to

learn about the troubleshooting tools available in the UCA for EBC User Interface,
please refer to: [R3] HP UCA for EBC User Interface Guide

5.1.3 JMX Console

To start the Java JMX Console, either locally on the system hosting the UCA for EBC
Server or remotely from another system (in which case you will need to adjust the
JMX URL accordingly), please execute the following commands:

On both HP-UX, and Linux:

$ $JAVA HOME/bin/jconsole

Select the “Remote Process” radio button and type the following URL in the input
text field:

lservice:jmx:rmi://<hostname or IP address>/jndi/rmi://<hostname or IP
laddress>:<port #>/uca-ebc|

<hostname or IP address> is the actual hostname (full DNS name) or the IP address
of the UCA for EBC Server system. The default value is localhost.

<port #> is the port number for UCA for EBC Server RMI port, 1100 by default for the
default instance. Please check the value of the “uca.ebc.jmx.rmi.port” property in

51

the ${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfileifyou're
unsure what RMI port number your UCA for EBC Server is using.

|2 Java Monitoring & Management Cansale (= e |

Connection Window Help

1= JConsole: New Connection E=

2 ifa

New Connection

=

() Local Process:

Name PID

com.hp.uca.common.launch.Ucalauncher com.hp.uca.exp... 7380

sun. tools jconsole. JConsole 7196
4076

®©

| Remote Process:

service mrmi: focalhost findifrmi: {localhost: 1100 uca-ebe|
Usage: <hostname=:<part> OR servics:jmx: <protocol>:<sap=

Username: Password:

Figure 5 - Java JMX Console: Connecting to UCA for EBC Server

Then click on the “Connect” button.

Once you're connected to the Java JMX console for UCA for EBC, you can go to the
MBeans tab to get access to the managed Java beans that have been defined
specifically for administering UCA for EBC.

All managed beans for UCA for EBC are located under the uca_ebc folder, as seenin
the following screenshot:

52

|£| Connection Window Help o &

x

Overview | Memory | Threads | Classes [vM Summary| MEEBNSl ==

Action

IMImplementation
com.sun.management
connector

java.lang

java.util.logging
javax.management.remote.rmi

urg.asache.actl\/emq

= ActionManager
@ ActionQueue
@ ActionStats
@ ActionThreads
[-@ Collector
FAttributes
Operations
=@ Dispatcher
F-Attributes
Operations
(=@ Properties_uca_ebc
FErAttributes
=-@ Server
Operations
[-@ valuePackManager
[+ Attributes
Operations
[=- 1. pd-example-3.0-5P2
@ ClassLoader
MediationFlows
=+ Scenarios
=@ com.hp.uca.expert.vp.pd.ProblemDetection
Ei-Attributes
[#-Operations
=@ valuePack
Attributes
Operations

OH- - EE e

Figure 6 - Java JMX Console: UCA for EBC MBeans

Under the uca_ebc folder, there are several folders providing
information/statistics*/monitoring/administration features on:

e Internal UCA for EBC components:
o Action Manager
o Collector
o Dispatcher
o Properties
o Server
o Value Pack Manager
e UCA for EBC value packs: there is one folder per running pack
The following sections will provide more detail on these folders.
Note

* The statistics available in the Java Console are also available at the UCA for EBC
User Interface. Some additional features are available in the Java Console, for
example to reset the statistics counters or to get information about internal UCA
for EBC components that are not yet available at the UCA for EBC User Interface.

5.1.3.1 Monitoring UCA for EBC internal components

Monitoring UCA for EBC Action Manager

The UCA for EBC Action Manager is an internal UCA for EBC component that provides
the capability to process asynchronous actions requested in the Drools rules files of
an UCA for EBC Value Pack scenario. Asynchronous actions are created when the
following code is present in a Drools rules file of a scenario:

Action action = new Action("TeMIP AO Directives localhost");
action.addCommand ("directiveName", "ACKNOWLEDGE") ;

53

action.addCommand ("entityName", a.getIdentifier());
action.addCommand ("UserId", "UCA EBC");
action.executeAsync (AODirectiveKey.ENTITY NAME) ;

These asynchronous actions are handled by the UCA for EBC Action Manager
internal component and are processed by the proper Channel Adapter on the
mediation layer (0SS Open Mediation V7.1).

In the Java Console, the Action Manager folder contains the following sub-folders:

¢ Action Queue: this queue contains the list of asynchronous actions that are
currently being processed

o Action Statistics: Information about the performance rate of the Action
Manager

o Action Threads: Information about the Action Manager thread pool

The following screenshot shows the UCA for EBC Action Manager component at the
Java JMX Console:

£ Connection Window Help

overview | Memary | Threads | Classes [vM Summary| MBEEHS‘

i Action Attribute values
i+ IMImplementation
f- L) com.sun.management Name Value
i+ connector CurrentSize 0
1 java.lang ateLastHighvaterMark -05-16 16:29:46.102 +
B java.util.legging atelastPublish -05- 7:45:32.071 H
+ Jjavax.management.remote.rmi ateLastSubscribe -05- 7:45:32.070 +
B org.apache.activemq atelastZeroed -05- 7:45:32.070 H
= uca_ebc HighWaterMark
= | ActionManager HighwaterMarksStillncreasing alse
=@ ActionQueue axSize 0
g m umberZeroedSinceLastHighWaterMark |88
i} Operations SizeHistory java.lang.String[3]
@ ActionStats TotalObjects 105
-6 ActionThreads TotalObjectsSinceLastHighWaterMark |96
EH-1@ Collector
& @@ Dispatcher
t-@@ Properties_uca_ebc
-6 Server

@ ValuePackManager
&+ |l pd-example-3.0-5P2

Figure 7 - Java JMX Console: UCA for EBC Action Manager

The following sections will provide more detail on the sub-components of the UCA
for EBC Action Manager available at the Java JMX console.

Notes

" For more information on asynchronous actions please refer to: [R2] HP UCA for
EBC Value Pack Development Guide

Action Queue

The Action Queue can be monitored at the Java JMX console using both attributes
and operations.

54

The following table lists the attributes of the Action Queue that are shown on the
Java JMX console:

Attribute name Settable Explanation

CurrentSize No The current size of the Action Queue (in
number of asynchronous actions in the
queue)

DateLastHighWaterMark No Date and time of the last high water mark

for the Action Queue

DateLastPublish No Date and time of the last time an
asynchronous action was added to the
queue

DateLastSubscribe No Date and time of the last time an

asynchronous action was removed from
the queue to be processed by a thread

DatelLastZeroed No Date and time of the last time the Action
Queue was empty

HighWaterMark No Value of the last high water mark for the
Action Queue (in number of asynchronous
actions in the queue)

HighWaterMarkStillincrea NoO Whether the high water mark for the Action

sing Queue is still increasing or not

MaxSize No Maximum size of the ActionQueue (in
number of asynchronous actions in the
queue)

NumberZeroedSinceLastHi NO The number of times the Action Queue size

ghWaterMark was 0 since the last high water mark

SizeHistory No A history of the size of the ActionQueue (in
number of asynchronous actions in the
queue)

TotalObjects No Total number of asynchronous actions that
have been added to the Action Queue since
start-up

TotalObjectsSinceLastHig ~ NoO Total number of asynchronous actions that

hWaterMark have been added to the Action Queue since

last high water mark

Table 16 - Java JMX Console: UCA for EBC Action Manager - Action Queue -
Attributes

The following table lists the operations that can be executed on the Action Queue
using the Java JMX console:

Operation name Explanation

resetQueueHistory() Resets all Action Queue counters (attributes)

55

Table 17 - Java JMX Console: UCA for EBC Action Manager — Action Queue -
Operations

Action Statistics

Action Statistics can be monitored at the Java JMX console using both attributes
and operations.

The following table lists the attributes of the Action Statistics that are shown on the
Java JMX console:

Attribute name Settable Explanation

ConsolidatedRate No The consolidated (average) performance rate
of the Action Manager (in number of
asynchronous actions processed per second)

HighestRate No The highest performance rate of the Action
Manager (in number of asynchronous actions
processed per second)

LastRate No The last performance rate of the Action
Manager (in number of asynchronous actions
processed per second)

LongestBurstRate No The performance rate of the longest burst of
the Action Manager (in number of
asynchronous actions processed per second)

Table 18 - Java JMX Console: UCA for EBC Action Manager — Action Statistics -
Attributes

The following table lists the operations that can be executed on the Action
Statistics using the Java JMX console:

Operation name Explanation

resetRates() Resets all Action Statistics rates (i.e. attributes)

56

Table 19 - Java JMX Console: UCA for EBC Action Manager — Action Statistics -
Operations

Action Threads

Action Threads can be monitored at the Java JMX console using both attributes and
operations.

The following table lists the attributes of the Action Threads that are shown on the
Java JMX console:

Attribute name Settable Explanation

FailedActions No The total number of failed asynchronous
actions of the Action Manager

NbActiveThread No The current number of active threads in the
thread pool of the Action Manager

NbPoolThread No The total number of threads in the thread
pool of the Action Manager

Table 20 - Java JMX Console: UCA for EBC Action Manager — Action Threads -
Attributes

The following table lists the operations that can be executed on the Action Threads
using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Action Threads counters (i.e. attributes)

Table 21 - Java JMX Console: UCA for EBC Action Manager — Action Threads -
Operations

Monitoring UCA for EBC Collector

The UCA for EBC Collector is an internal UCA for EBC component that collects all
events (Alarms, etc...) coming into UCA for EBC either from the mediation layer (0SS
Open Mediation V7.1) or from the uca-ebc-injector tool.

Monitoring the UCA for EBC Collector component is akin to measuring the input rate
of UCA for EBC.

Allincoming events are first validated to weed out invalid/unrecognized types of
events. Validation errors will result in the events being rejected by the Collector.

The following screenshot shows the UCA for EBC Collector component at the Java
JMX Console:

57

|£] Java Monitoring & Management Console - pid: 5632 org.codehaus.classworlds.Launcher start

ESEIF

™

|£| Connection Window Help

[]ver\rlewl Memoryl Threadsl Classesl VM Summary| MBeans |

[-[=](x]
==

. IMImplementation
|| com.sun.management
| connector
. java.lang
. java.util.logging
. javax.management.remote,
.. org.apache.activernq
t- || org.nec4j
[=+) uca_ebc
[+- | ActionManager
[Collector
EaBAttributes]
[+-Operations
@ CollectorStats
-1@ Dispatcher
-6 Properties_uca_ebc
@ Server
-1@ ValuePackManager
- | persistence-example-3.1

EHE-EREE

L]] | »

Attribute values

Name Value
AverageEventNbPerMessage 1.0
CollectorRate 93.45465991101621

DatelastMessageValidationError

2014-04-23 16:58:55.581 +0200

DatelastReceivedEvent

2014-04-23 17:01:05.153 +0200

DatelastReceivedMessage

2014-04-23 17:01:05.137 +0200

DatelastRejectedEvent

2014-04-23 16:58:55.581 +0200

DatelastRejectedMessage

2014-04-23 16:58:55.581 +0200

MessageValidationErrorshumber

ReceivedEvents

ReceivedMessages

RejectedEvents o
RejectedMessages o

Figure 8 - Java JMX Console: UCA for EBC Collector - Attributes

The UCA for EBC Collector can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Collector that are shown
on the Java JMX console:

Attribute name

AverageEventNbPerMessa
ge

CollectorRate

DateLastMessageValidatio

nError

DatelLastReceivedEvent

DatelLastReceivedMessage

DateLastRejectedEvent

Settable Explanation

No Average number of events per JMS
message received by the collector, i.e.
batching factor

No Collector rate is the average event rate
going through the Collector (in events per
second)

No Date and time of the last event™ in error
(due to validation error) received by the
Collector

No Date and time of the last event™ (Alarms,
etc...) received by the Collector

No Date and time of the last JMS message®
received by the Collector

No Date and time of the last event™" rejected

by the Collector

58

Attribute name Settable Explanation

DateLastRejectedMessage NO Date and time of the last JMS message™
rejected by the Collector

MessageValidationErrorsN ~ No Number of events™ in error (due to

umber validation error) received by the Collector

ReceivedEvents No Number of events" (Alarms, etc...) received
by the Collector

ReceivedMessages No Number of JMS messages!" received by the
Collector

RejectedEvents No Number of events” (Alarms, etc...) rejected
by the Collector

RejectedMessages No Number of JMS messages'" rejected by the
Collector

Table 22 - Java JMX Console: UCA for EBC Collector - Attributes

Note

(M The UCA for EBC Collector receives JMS message which can contain any number of
events (Alarms, etc...), i.e. a batch of events. This explains why there are Collector
statistics for both JMS messages and events.

The following table lists the operations that can be executed on the UCA for EBC
Collector using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Collector counters (i.e. attributes)

Table 23 - Java JMX Console: UCA for EBC Collector - Operations

Note

%~ For more information on the uca-ebc-injector tool please refer to the following
section: 2.2.2 “uca-ebc-injector”.

Monitoring UCA for EBC Dispatcher

The UCA for EBC Dispatcher is an internal UCA for EBC component that receives
events (Alarms, etc...) coming from the UCA for EBC Collector and forwards those
events to any eligible scenario (a property of the scenario states whether a scenario
is eligible to receiving incoming events or not) of any value pack currently running
on UCA for EBC.

59

The following screenshot shows the UCA for EBC Dispatcher component at the Java
JMX Console:

|£l Connection Window Help - a x
Dverwewl Memoryl Threadsl C\asseslVM Summary‘ MBEEHSl =
J Action Attribute values
[#- 1) IMImplementation
[+ | com.sun.management Name Value
. connector DispatcherRate 1.3050628960559917
[java.lang LogEvents false
/ java.util.lagging Queue_CurrentSize 0
/ Javax.management.remote.rmi Queue_DateLastChangeEvent 2013-05-16 :19.499 +0200
EH- | org.apache.activemq Queue_DateLastDeletionEvent 2013-05-16 16:27:57.008 +0200
-1 uca_ebe Queue_DatelastHighWaterMark 2013-05-16 16:29:10.331 +0200
[1. ActionManager Queue_DatelastPublish 2013-05-16 17:45:32.039 +0200
3 Collector Queue_DatelastSubscribe 2013-05-16 17:45:32.039 +0200
[Dispatcher Queue_DatelastZeroed 2013-05-16 17:45:32.039 +0200
A Queue_HighVWaterMark 0]
Operations Queue_HighWaterMarkStillIncreasin; false
[+ Properties_uca_ebc Queue_NumberZercedSinceLastHigh... |96
@ Server Queue_SizeHistory java.lang.String[2]
@ ValuePackManager Queue_TotalChangesEvents o
[pd-example-3.0-5F2 Queue_TotalDeletionEvents [1]
Queue_TotalObjects 102

Queue_TotalObjectsSinceLastHighWat... 95

Figure 9 - Java JMX Console: UCA for EBC Dispatcher - Attributes

The UCA for EBC Dispatcher can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Dispatcher that are shown
on the Java JMX console:

Attribute name Settable Explanation

DispatcherRate No The event rate of the dispatcher (in number
of events per second)

LogEvents Yes A flag indicating whether the Dispatcher
should log the list of events that it
processes or not.

THIS ATTRIBUTE IS OBSOLETE. DO NOT USE

IT.
Queue_CurrentSize No The current size of the Dispatcher queue (in
number of events)
Queue_DateLastChangeEv NoO The date and time of the last “change
ent event” that was added to the Dispatcher
queue
Queue_DateLastDeletionE NoO The date and time of the last “deletion
vent event” that was added to the Dispatcher
queue
Queue_DateLastHighwate NO The date and time of the last high water
rMark mark of the Dispatcher queue

60

Attribute name Settable Explanation

Queue_DateLastPublish No Date and time of the last time an event was
added to the queue
Queue_DateLastSubscrib No Date and time of the last time an event was

removed from the queue to be processed

Queue_DateLastZeroed No The date and time of the last time the
Dispatcher queue was empty

Queue_HighWaterMark No The value of the high water mark of the
Dispatcher queue (in number of events)

Queue_HighWaterMarkStit No Whether the high water mark of the

lincreasing Dispatcher queue is still increasing or not

Queue_NumberZeroedSinc NoO The number of times that the Dispatcher

eLastHighWaterMark queue was empty since the last high water
mark

Queue_SizeHistory No The history of the Dispatcher queue size

Queue_TotalChangesEvent NO The total number of “change events” that

s have been added to the Dispatcher Queue
since start-up

Queue_TotalDeletionEven NoO The total number of “deletion events” that

ts have been added to the Dispatcher Queue
since start-up

Queue_TotalObjects No The total number of “objects” that have
been added to the Dispatcher Queue since
start-up

Queue_TotalObjectsSinceL NoO The total number of “objects” that have

astHighWaterMark been added to the Dispatcher Queue since

the last high water mark

Table 24 - Java JMX Console: UCA for EBC Dispatcher - Attributes

The following table lists the operations that can be executed on the UCA for EBC
Dispatcher using the Java JMX console:

Operation name Explanation
resetCounters() Resets all Dispatcher counters (i.e. attributes), except the
LogEvents attribute.

Table 25 - Java JMX Console: UCA for EBC Dispatcher - Operations

Monitoring UCA for EBC Properties

The UCA for EBC Properties folder at the Java JMX Console shows the file system
location of each sub-folder of the UCA for EBC application.

61

The following screenshot shows the UCA for EBC Properties component at the Java
JMX Console:

|£/ Connection Window Help o a x
Overview | Memory | Threads | Classes| vM Summary| MBeans al=
(- 1. Action Attribute values
IMImplementation
com.sun. management Name Value
. connector \AlarmsDirectory opt/UCA-EBC/alarms
java.lang ApidocDirectory opt/UCA-EBC/apidoc
Java.util.logging ArchiveDirectory /var/opt/UCA-EBC/instances/default/archive
Javax.management.remote.rmi BinDirectory opt/UCA-EBC/bin
(- L. org.apache.activemq ConfigurationDefaultDirectory opt/UCA-EBC/defaults/conf
(= uca_ebc ConfigurationDirectory /var/opt/UCA-EBC/instances/default/conf
ActionManager ataDirectory var/opt/UCA-EBC/instances/default/
@ Collector faultsDirectory opt/UCA-EBC/defaults
@ Dispatcher eployDirectory jvar/opt/UCA-EBC/instances/default/ deploy
mﬁemes_um_ebc ExternalLibDirectory /var/opt/UCA-EBC/instances/default/externallib
tedbirectory 0pt/UCA-EBC/gettingStarted
¥ erver ibDirectory opt/UCA-EBC/lib
@ ValuePackManager icensesDirectory opt/UCA-EBC/licenses
pd-example-3.0-5P2 og4jConfigurationFileUr! ffile:/var/opt/UCA-EBC/instances/default/conf/uca-ebc-lo...
ogDefaultDirectory opt/UCA-EBC/defaults/logs
ogDirectory jvar/opt/UCA-EBC/instances/default/logs
ootDirectory /opt/UCA-EBC/
SchemasDirectory 0pt/UCA-EBC/schemas
serDBDirectory var/opt/UCA-EBC/instances/default/users
Directory opt/UCA-EBC] p
\aluePacksDirectory \/var/opt/UCA-EBC/instances/ default/valuepacks
WebappDirectory 0pt/UCA-EBC/webapp

Figure 10 - Java JMX Console: UCA for EBC Properties - Attributes

There are no operations that can be executed at the Java JMX Console on the UCA
for EBC Properties.

The following table lists the attributes of the UCA for EBC Properties that are shown
on the Java JMX console:

Attribute name Settable Explanation

AlarmsDirectory No Default Value: ${UCA_EBC_HOME}/alarms
ApidocDirectory No Default Value: ${UCA_EBC_HOME}/apidoc

ArchiveDirectory No Default Value:
${UCA_EBC_INSTANCE}/archive

BinDirectory No Default Value: ${UCA_EBC_HOME}/bin

ConfigurationDefaultDirec NO Default Value:
tory ${UCA_EBC_HOME}/defaults/conf

ConfigurationDirectory No Default Value:
${UCA_EBC_INSTANCE}/conf

DataDirectory Yes Default Value: ${UCA_EBC_INSTANCE}

DefaultsDirectory No Default Value:
${UCA_EBC_HOME}/defaults

DeployDirectory No Default Value:
${UCA_EBC_INSTANCE}/deploy

62

ExternalLibDirectory

GettingStartedDirectory

LibDirectory

LicensesDirectory

Log4jConfigurationFileUrl

LogDefaultDirectory

LogDirectory

RootDirectory

SchemasDirectory

ValuePacksDefaultDirector

y

ValuePacksDirectory

WebappDirectory

Yes

Default Value:
${UCA_EBC_INSTANCE}/externallib

Default Value:
${UCA_EBC_HOME}/gettingStarted

Default Value: ${UCA_EBC_HOME}/lib

Default Value: ${UCA_EBC_HOME}/licenses

Default Value:
file:${UCA_EBC_VAR}/conf/uca-ebc-
log4j.xml

Default Value:
${UCA_EBC_HOME}/defaults/logs

Default Value: ${UCA_EBC_INSTANCE}/logs

Default Value: ${UCA_EBC_HOME]}

Default Value:
${UCA_EBC_HOME}/schemas

Default Value:
${UCA_EBC_HOME}/defaults/valuepacks

Default Value:
${UCA_EBC_INSTANCE}/valuepacks

Default Value: ${UCA_EBC_HOME}/webapp

Table 26 - Java JMX Console: UCA for EBC Properties - Attributes

Monitoring UCA for EBC Server

The following screenshot shows the UCA for EBC Server component at the Java JMX

Console:

63

|2| Connection Window Help
Overviev | Memory | Threads | Classes | vM Summary| MBeans

Action
IMImplementation
com.sun.management
connector
java.lang
Java.util.logging
javax.management.remote. rmi
org.apache.activemg
uca_ebc

ActionManager

[+ Collector

@ Dispatcher

@ Properties_uca_ebc

@ Server
s oe

[T - B

reloadLog4jConfigurationFile
-~reloadLog4]ConfigurationFile
serverstop
serverstop
~-serverShove
@ ValuePackManager
pd-example-3.0-5P2

Operation invocation

void | reloadLog4jConfigurationFile | ()

Vo0 [relpadLog4jConfigurationFile | (po String)

(o we)

ot [nmzmn] 0

java.lang String 0

Figure 11 - Java JMX Console: UCA for EBC Server - Operations

The UCA for EBC Server can be monitored at the Java JMX console using operations.

The following table lists the operations that can be executed on the UCA for EBC

Server using the Java JMX console:
Operation name Explanation

reloadLog4jConfigurationFile()

reloadLog4jConfigurationFile(Strin
g)

serverStop(boolean)

serverStop()

serverShow()

Reloads the log4J configuration file.

Reloads the log4J configuration file, using the
log4J configuration file located at the path passed
as parameter

Stops UCA for EBC Server. The parameter is a
boolean flag that indicates whether to restart
(true) UCA for EBC Server once it has stopped or
not (false).

Stops UCA for EBC Server.

Displays the status of UCA for EBC Server, whether
it's running or not.

Table 27 - Java JMX Console: UCA for EBC Server - Operations

Monitoring UCA for EBC Value Pack Manager

The UCA for EBC Value Pack Manager is an internal UCA for EBC component. It
manages all the Value Packs of the UCA for EBC application.

The following screenshot shows the UCA for EBC Value Pack Manager component at

the Java JMX Console:

64

[

4| Connection Window Help - e x

Overview | Memory | Threads | Classes | vt Summary| MBeans =T
Action Operation invocation
IMImplementation
(). com.sun.management java.lang.String [gisplay | ()
[s connector
. Java.lang
java.util.logging
Javax.management.remote.rmi Javalang.Sting [~ geayaluepack | (po String)
[+ 1. org.apache.activemg
(=) uca_ebe
ActionManager java.lang. Strin "
@ Collector ! 95109 | startvaluePack | (po String . pL String)
3 Dispatcher
@ Properties_uca_ebc [
[@ Server Java.lang.Stng [yngeployvaluepack 0 Strin 1 strin:
)@ valuePackManager Py (P 9 ol 9)
[H-Attributes.
ava.lang.Strin
| pd-example-3.0-5F2 Java.lang.sting [sopvaluePack | (po String . pl String)

ng.String @ (p0 String L pl String . p2 String
Java.ang.String [ojoaqs cenarioSession | (po String . pt String P2 String

ng.String (po String . pt String . p2 String
Javalang.Sting [~ otenginelogging | (po String Lot String . p2 String P

,

< [0 | »

Figure 12 - Java JMX Console: UCA for EBC Value Pack Manager - Operations

The UCA for EBC Value Pack Manager can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Manager that
are shown on the Java JMX console:

Attribute name Settable Explanation

ActiveValuePacks No The list of active value pack currently
running on UCA for EBC

AllvaluePacks No The list of all value pack currently
running/degraded/stopped/not deployed
on UCA for EBC

DeploymentHistory No The complete history of deployments of

value packs on UCA for EBC

Table 28 - Java JMX Console: UCA for EBC Value Pack Manager - Attributes

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Manager using the Java JMX console:

Operation name Explanation

display() Lists all Value Packs and scenarios currently
running on UCA for EBC

startValuePack(String) Starts a Value Pack identified by the path of the

Value Pack in the ${UCA_EBC_INSTANCE}/deploy
folder passed as parameter.

For example: “deploy/<Value Pack Name>-<Value
Pack Version>"

Parameter 1: path of the Value Pack

65

Operation name Explanation

startValuePack(String, String) Starts a Value Pack identified by its name and
version passed as parameters.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

undeployValuePack(String, Undeploys a Value Pack identified by its name and
String) version passed as parameters

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

stopValuePack(String, String) Stops a Value Pack identified by its name and
version passed as parameters

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

dumpScenarioSession(String, Dumps the Drools Working Memory of a scenario of
String, String) a value pack identified by the value pack name,
version, and the scenario name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working
Memory of all the scenarios of the Value Pack
specified in parameters 1, and 2 is dumped.

If parameter 1, 2, and 3 are omitted, then the Drools
Working Memory of all the scenarios of all the value
packs is dumped.

reloadScenarioSession(String, Reloads a specific rule file of a scenario of a value
String, String, String) pack identified by the value pack name, version, the
scenario name, and the rule file name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name
Parameter 4: Rule File Name

If Parameter 4 is omitted, then all rules files of the
scenario of the Value Pack specified in parameters
1, 2, and 3 are reloaded.

If parameter 3 and 4 are omitted, then all rules files
of all the scenarios of the Value Pack specified in
parameters 1, and 2 are reloaded.

If parameter 1, 2, 3 and 4 are omitted, then all rules
files of all the scenarios of all the value packs are
reloaded.

Operation name Explanation

retractScenarioSession(String, Clears the Drools Working Memory of a scenario of a
String, String) value pack identified by the value pack name,
version, and the scenario name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working
Memory of all the scenarios of the Value Pack
specified in parameters 1, and 2 is cleared.

If parameter 1, 2, and 3 are omitted, then the Drools
Working Memory of all the scenarios of all the value
packs is cleared.

setEngineLogging(String, String, Enables/Disables scenario specific Drools engine

String, Boolean) logging for a Value Pack scenario specified by the
Value Pack name, version, and scenario name. The
4th parameter is a boolean value: true for enabling,
false for disabling scenario specific Drools engine

logging.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

Parameter 4: A Flag indicating whether to
enable/disable engine logging (true/false)

If parameter 3 is omitted, then the engine logging of
all the scenarios of the Value Pack specified in
parameters 1, and 2 is enabled or disabled
depending on the value of parameter 4.

If parameter 1, 2, and 3 are omitted, then the
engine logging of all the scenarios of all the value
packs is enabled or disabled depending on the value
of parameter 4.

reloadConfigurationFile(String, Reloads a configuration file for a Value Pack

String, String, String) scenario specified by the Value Pack name, version,
and scenario name. The 4th parameter is the name
of the configuration file to reload.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name
Parameter 4: Configuration file name

If parameter 4 is omitted, all configuration files of
the scenario are reloaded.

If parameters 3 and 4 are omitted, all configuration
files of all scenarios of the value pack are reloaded.

If parameters 1, 2, 3 and 4 are omitted, all
configuration files of all scenarios of all value packs
are reloaded.

67

Table 29 - Java JMX Console: UCA for EBC Value Pack Manager - Operations

5.1.3.2 Monitoring UCA for EBC value packs

Each UCA for EBC Value Pack running has its own sub-folder at the Java JMX
Console, under the “uca_ebc” top folder. Each Value Pack sub-folder is named after
the Value Pack name and version.

In the Java Console, each Value Pack folder contains the following sub-folders:

o Class Loader: this sub-folder is displayed only if the
uca.ebc.classloader property inthe
${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfilehas
been set to ucaclassloader (thisis not the case by default) and
contains information about the UCA for EBC class loader specific to the
Value Pack

o DB flows: this sub-folder contains information about the DB flows specific to
the Value Pack

¢ Mediation flows: this sub-folder contains information about the mediation
flows specific to the Value Pack

e Scenarios: this sub-folder contains information on each of the scenarios of
the value pack (the contents of this sub-folder is explained in the next
section: 5.1.3.3 “Monitoring UCA for EBC scenarios”)

¢ Value Pack: this sub-folder contains information on the value pack itself

The following screenshot shows a sample UCA for EBC Value Pack sub-folder at the
Java JMX Console:

|£ | Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start = Bl P
|% Connection Window Help - a x
Dverviewl Memoryl Threadsl Classesl VM Summaryl MBeans | ==

IMImplementation
cnm.sun.management
. connector
. java.lang
java.util.logging
javax.management.remote.rmi
org.apache.activemqg
uca_ebc
. ActionManager
@@ Collector
@@ CollectorStats
@ Dispatcher
i@ Properties_uca_ebc
@
@

&8 0) G £ 6

B B e

Server
ValuePackManager
.
[+ ClassLoader
[|, DBFlows
[| MediationFlows

[+ || Scenarios
@ ValuePack

R

Figure 13 - Java JMX Console: a UCA for EBC Value Pack

Class Loader

The following sections will provide more detail on the Class Loader, DB Flows,
Mediation flows, Scenarios and Value Pack sub-folders of any UCA for EBC Value
Pack at the Java JMX console.

This sub-folder is displayed only if the uca. ebc. classloader propertyinthe
${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfile hasbeensetto
ucaclassloader (thisis not the case by default).

The UCA for EBC Value Pack Class Loader represents the UCA EBC class loader for a
specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value
Pack Class Loader component at the Java JMX Console:

[- - N
|£ Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start l (=] g
[£| Connection Window Help - & X

D'verviewl Memory | Threadsl C\assesl VM Summary‘ MBeans ‘ ==
. JMImplementation Attribute values
| com.sun.management
. connector Name Value
. java.lang ListClasses java.lang.String[25]
. java.util.logging ListErrorClasses hﬂﬁiﬂ]
[[javax.management.remaote.rmi ListErrorResources java.lang.String[0]
(- L. org.apache.activemq ListrullPackages java.lang.String[706]
(=) uca_ebe ListJarFiles java.lang.String[4]
. ActionManager ListValuePackPackages java.lang.String[5]
11-6@ Collector TotalErrorClasses o
CollectorStats TotalLoadedClasses 25
Dispatcher TotalLoadedPackages 5
“@ Properties_uca_ebc
1@ Server
1@ ValuePackManager
=1 | persistence-example-3.1
=@ ClassLoader
i
. [Operations
. DBFlows
. MediationFlows
. Scenarios
@ valuePack
= — — =

Figure 14 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes

Any UCA for EBC Value Pack Class Loader can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Class Loader
that are shown on the Java JMX console:

Attribute name Settable Explanation

ListClasses No The list of Java Classes loaded by the Value
Pack Class Loader

ListErrorClasses No The list of Java Classes that could not be
loaded by the Value Pack Class Loader

ListErrorResources No The list of Java Resources that could not be

loaded by the Value Pack Class Loader

69

Attribute name Settable Explanation

ListFullPackages No The full list of Java Packages loaded by the
Value Pack Class Loader

ListJarFiles No The list of JAR files loaded by the Value
Pack Class Loader

ListValuePackPackages No The list of Value Pack Java Packages loaded
by the Value Pack Class Loader

TotalErrorClasses No The total number of Java Classes that could
not be loaded by the Value Pack Class
Loader

TotalLoadedClasses No The total number of Java Classes loaded by

the Value Pack Class Loader

TotalLoadedPackages No The total number of Java Packages loaded
by the Value Pack Class Loader

Table 30 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes

The following screenshot shows the operations available for a UCA for EBC Value
Pack Class Loader component at the Java JMX Console:

70

-

|£ | Java Menitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start =y X

|£| Connection Window Help

| Overviewl Memorlehreadsl C\assesl VM Summaryl MBeans ‘ =g=

. IMImplementation

| com.sun.management
. connector

. java.lang

. java.util.logging

. org.apache.activemq
.. uca_ebc
t- |, ActionManager
H-@ Collector
H-@ CollectorStats
1@ Dispatcher
(@ Properties_uca_ebc
[H-@ Server
@ ValuePackManager
[=- | persistence-example-3.1
- ClassLoader
Attributes
Ope
- |, DBFlows
- |, MediationFlows
- . Scenarios
[+ ValuePack

Operation invocation

. javax.management.remote.rmi

0

java.lang.5tring 0

oS dumpFullClass | (po String)

java.lang.String (g0 String)

fatalansiing getClassInfoAllHierarchy (po String)

fatalangsling getResourcelnfoAllHierarchy I (po String)

.

Figure 15 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Class Loader using the Java JMX console:

Operation name

dumpResources()

dumpClasses()

dumpFullClass(String)

getClassinfo(String)

Explanation

Dumps the list of all the Resources loaded by the
Value Pack Class Loader

Dumps the list of all the Java Classes loaded by the
Value Pack Class Loader

Dumps a Java Class loaded by the Value Pack Class
Loader. The Java Class is identified by the name of
the class passed as a parameter.

Parameter 1: Full Class Name

Returns information on a Java Class loaded by the
Value Pack Class Loader. The Java Class is
identified by the name of the class passed as a
parameter.

Parameter 1: Full Class Name

getClassinfoAllHierarchy(String) Returns information on a Java Class loaded by the

getResourcelnfo(String)

Value Pack Class Loader or by the Main Class
Loader. The Java Class is identified by the name of
the class passed as a parameter.

Parameter 1: Full Class Name

Returns information on a Resource loaded by the
Value Pack Class Loader. The Resource is identified
by the name passed as a parameter.

71

DB Flows

Operation name Explanation

Parameter 1: Resource Name

getResourcelnfoAllHierarchy(Stri Returns information on a Resource loaded by the

ng) Value Pack Class Loader or Main Class Loader. The
Resource is identified by the name passed as a
parameter.

Parameter 1: Resource Name

Table 31 - Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations

The UCA for EBC Value Pack DB Flows represent the DB flows for a specific UCA for
EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value
Pack Mediation Flows component at the Java JMX Console:

|£] Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start E@g
|£| Connection Window Help l:l El El
Dvervwewl Memoryl Threadsl C\assesl VM Summary‘ MBeans ‘ -

| IMImplementation

|/ com.sun.management
|| connector Name Value
. java.lang FlowStatus Active
| java.util.logging

| javax.management.remote.rmi
| org.apache.activemq

ca_ebc

Attribute values

-
2014-04-24 13:04:52.006 +0200 Active—
FlowStatusHistory

-

:T = 1 »

| ActionManager

@ Collector FlowType Dynamic

@ CollectorStats Name scenarioDBFlow

@ Dispatcher Sourceldentifier DB

@ Properties_uca_ebc SynchronizationStatus Synchronized f
@ Server

@ ValuePackManager
| persistence-example-3.1
(-8 ClassLoader nn
=} |, DBFlows < |
=143 scenarioDBFlow
A
[+-Operations
(- | MediationFlows
.. Scenarios
[+ ValuePack

-
2014-04-24 13:04:52.006 +0200 Synchr—
SynchronizationStatusHistory

LLLI 3

Figure 16 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Attributes

Any UCA for EBC Value Pack DB Flow can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack DB Flows that
are shown on the Java JMX console:

Attribute name Settable Explanation

FlowStatus No The status of the DB Flow

72

Attribute name Settable Explanation

FlowStatusHistory No A history of the status of the Mediation DB
over time

FlowType No Either dynamic or static

Name No The name of the DB Flow

Sourceldentifier No The source identifier of the DB Flow

SynchronizationStatus No Either synchronized or synchronizing

SynchronizationStatusHist NO A history of the synchronization status of

ory the DB Flow over time

Table 32 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Attributes

The following screenshot shows the operations available for a UCA for EBC Value
Pack Class Loader component at the Java JMX Console:

r - n
|£] Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start E@g
|2/ Connection Window Help I:lE“Il

Dvervlewl Memorlehreadsl CIasseslVM Summavyl MBeans ‘ sl

. IMImplementation Operation invocation
. com.sun.management
} connector 9 java.lang.String 0
. java.lang
. java.util.logging
. javax.management.remote.rmi
. org.apache.activemg
. uca_ebc
. ActionManager
Collector
CollectorStats
Dispatcher
Properties_uca_ebc Java.lang.Sring stop | ()
Server
@ ValuePackManager
[. persistence-example-3.1
@ ClassLoader
=+ |. DBFlows

=@ scenarioDBFlow

[#-Attributes

. MediationFlows Java.lang.string)

. Scenarios
@ ValuePack

java.lang.String 0

Figure 17 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Operations

73

The following table lists the operations that can be executed on the UCA for EBC
Value Pack DB Flows using the Java JMX console:

Operation name Explanation

start() Start the DB Flow

stop() Stop the DB Flow

status() Displays the status of the DB Flow
resynchronize() Resynchronizes the DB Flow

Table 33 - Java JMX Console: UCA for EBC Value Pack — DB Flows - Operations

Mediation Flows

The UCA for EBC Value Pack Mediation Flows represent the mediation flows for a
specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value
Pack Mediation Flow component at the Java JMX Console:

|£| Connection Window Help l:IIEIIII
Dvevvlewl Memoryl Threadsl CIasseslVM Summaryl MBeans ‘ h
|, Action Aftribute values
|, IMImplementation
|, com.sun.management Name Value
|, connector ActionReference [TeMIP_FlowManagement
. Java.lang FailedActions [
I. java.util.logging FlowStatus (Active
|| javax.management.remote.rmi FlowsStatusHistory java.lang.String[3]
I, org.apache.activemgq FlowType Dynamic
=} uca_ebc Mame Flowl
| ActionManager SyncronizationStatus Synchronizing
@ Collector SyncronizationStatusHistory java.lang.String[1]

@ Dispatcher

@ Properties_uca_ehc
@ Server

@ ValuePackManager
|, pd-example-3.0-GP2
@ ClassLoader

=+ | MediationFlows

i B Flowl
Operations
Flow2

OHEEEEEE

@ Flow3
| Scenarios
@ ValuePack

Figure 18 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows -
Attributes

Any UCA for EBC Value Pack Mediation Flow can be monitored at the Java JMX
console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Mediation
Flows that are shown on the Java JMX console:

Attribute name Settable Explanation

74

Attribute name Settable Explanation

ActionReference No The Action Reference (from the
ActionRegistry.xml configuration file)
associated with the Mediation Flow

FailedActions No The number of Failed actions associated
with the Mediation Flow (Each action is
either a CreateFlow, DeleteFlow,

ResynchronizeFlow, or a StatusFlow action)

FlowStatus No The status of the Mediation Flow

FlowStatusHistory No A history of the status of the Mediation Flow
over time

FlowType No Either dynamic or static

Name No The name of the Mediation Flow

SynchronizationStatus No Either synchronized or synchronizing

SynchronizationStatusHist NO A history of the synchronization status of

ory the Mediation Flow over time

Table 34 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows -
Attributes

The following screenshot shows the operations available for a UCA for EBC Value
Pack Mediation Flow component at the Java JMX Console:

75

|£:| Java Monitoring & Management Cansole - pid: 8332 org.codehaus.classworlds.Launcher start

|£/ Connection Window Help

‘ Dverwewl Memory | Threadsl Classes | VM Summary‘ MBeans ‘

IMImplementation

com.sun.management

connector

java.lang

java.util.logging

javax.management.remote.rmi

org.apache.activemg

E L uca_ebe

|, ActionManager

@ Collector

[#-5@ CollectorStats

-@ Dispatcher

@ Properties_uca_ebc

@ Server

@ ValuePackManager

=] persistence-example-3.1

@ ClassLoader

| DBFlows

[=+ 11 MediationFlows
(=@ temipFlow

‘Attributes

Scenarios

@ ValuePack

Operation invocation

java.lang.5tring | digplayMediationFlowXML | ()

java.lang.5tring | gigplayLastActionStatus | ()

java.lang.String [displayLastCreateFlowActionStatus I[)

java.lang.String [displaylLastDeleteFlowActionStatus l[)

java.lang.String [displaylLastStatusFlowActionStatus][)

java.lang.String [displaylLastResynchFlowActionStatus][)

java.lang.String

java.lang.String

java.lang.String

java.lang.String 0

Figure 19 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows -

Operations

76

Scenarios

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Mediation Flows using the Java JMX console:

Operation name Explanation

start()

stop()

status()

resynchronize()

displayMediationFlowXML()

displayLastActionStatus()

displayLastCreateFlowActionSta
tus()

displayLastDeleteFlowActionSta
tus()

displayLastStatusFlowActionSta
tus()

displayLastResynchFlowActionSt
atus()

Start the Mediation Flow

Stop the Mediation Flow

Displays the status of the Mediation Flow
Resynchronizes the Mediation Flow

Displays the XML definition of the Mediation Flow
(extracted from the ValuePackConfiguration.xml
file)

Displays the output of the last action performed on
the Mediation Flow (either a CreateFlow,
DeleteFlow, ResynchronizeFlow, or a StatusFlow
action)

Displays the output of the last CreateFlow action
performed on the Mediation Flow

Displays the output of the last DeleteFlow action
performed on the Mediation Flow

Displays the output of the last StatusFlow action
performed on the Mediation Flow

Displays the output of the last ResynchronizeFlow
action performed on the Mediation Flow

Table 35 - Java JMX Console: UCA for EBC Value Pack — Mediation Flows -

Operations

All the scenarios of a value pack are listed under the Scenarios sub-folder of the
value pack folder, like in the screenshot below:

77

Value Pack

"

|£:| Java Monitaring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start E@M

|£| Connection Window Help - & X
O'verwewl Memorlehreadsl C\assesl VM Summaryl MEeansl =l=
IMImplementation MBeanInfo
com.sun.management
connector Name Value
java.lang Info:
java.util.logging ObjectMame uca_ebc:type=persistence-example-3.1,side=S...
Javax.management.remote.rmi ClassMame com.hp.uca.expert.scenario.internal. Scenario]MX.
org.apache.activemq Description Information on the management interface of th...
=1 uca_ebc Constructor-0:

ActionManager Name com.hp.uca.expert.scenario.internal.ScenarioJMX

@ Collector

Description Public constructor of the MBean
@ CollectorStats %;Lmr.g.g;
@ Dispatcher Name pl
@ Properties_uca_ebc Description
H-@ Server Type com.hp.uca.expert.scenario.internal. ScenarioImpl
(@ ValuePackManager Constructor-1:
[persistence-example-3.1 Name com.hp.uca.expert.scenario.internal. ScenarioJMX
@ ClassLoader Description Public constructor of the MBean
DBFlows
. MediationFlows
(=} . Scenarios
=R Y com. hp.uca.ebc.vp.examples.persistence. SimpleScenario |l Rty
H [+ -Attributes
Operations Name Value
@ valuePack Info:
immutablelnfo true
interfaceClasshame com.hp.uca.expert.jmxbean. Scenario]MXMXBean
mxbean true I

Figure 20 - Java JMX Console: UCA for EBC Value Pack - Scenarios

Each scenario sub-folder is named after the scenario. Please see chapter 5.1.3.3
“Monitoring UCA for EBC scenarios” for detailed information on the contents of each
scenario sub-folder.

The Value Pack sub-folder of a UCA for EBC Value Pack presents the attributes and
operations for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a Value Pack sub-folder
of a UCA for EBC Value Pack at the Java JMX Console:

78

|£| Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start 0 @@g

|£| Connection Window Help EIEHI'
==

‘ O'verwewl Memory | Threadsl Classesl VM Summary‘ MEEBHS|

| IMImplementation Attribute values

|, com.sun.management

|, connector Name Value

I java.lang DateLastReceivedEvent 2014-04-24 13:04:52.006 +0200

1/ java.util.logging FlowPercentage 100.0%
javax.management.remote.rmi FlowStatus Disabled

org.apache.activemng ReceivedEventsSinceStartup 2

uca_ebc ScenarioStatus Running

| ActionManager ScenariosName java.lang.String[1]

@@ Collector Status Running

@ CollectorStats StatusExplanation All Scenarios are running. Flow is disabled.

@ Dispatcher StatusHistory java.lang.String[3]

@ Properties_uca_ebc SynchronizationStatus None

@ Server

@ ValuePackManager

|/ persistence-example-3.1

@@ ClassLoader

|, DBFlows

| MediationFlows

|\ Scenarios

[=-6 ValuePack
atributes]
Operations

=}
.
B
i
=

a8

Figure 21 - Java JMX Console: UCA for EBC Value Pack — Value Pack - Attributes

Any UCA for EBC Value Pack can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack that are
shown on the Java JMX console:

Attribute name Settable Explanation

DateLastReceivedEvent No The date and time of the last event received
by the Value Pack

FlowPercentage No Percentage of events received by the Value

Pack compared to the total of events
received by the UCA for EBC Dispatcher

FlowStatus No The status of the Mediation Flow for the
Value Pack, either:

e Unknown
e Disabled
e Inactive

e Failover
e Failed

e Active

e Starting
e Stopping

79

ReceivedEventsSinceStart
up

ScenarioStatus

ScenariosName

Status

StatusExplanation

StatusHistory

SynchronizationStatus

The number of events received by the Value
Pack since start-up

The status of the Scenarios for the Value
Pack, either:

Starting
Running
Degraded
Failed
Stopped

Unknown

The list of scenario names associated with
the Value Pack

The status of the Value Pack, either:

Starting
Running
Degraded
Failed
Stopping
Stopped
NotDeployed

Unknown

A detailed explanation of the status of the
Value Pack

The full history of the Value Pack statuses,
since it was first started

The synchronization status of the Value
Pack, either:

Synchronizing

Synchronized

Table 36 - Java JMX Console: UCA for EBC Value Pack - Value Pack - Attributes

The following screenshot shows the operations available for a Value Pack sub-
folder of a UCA for EBC Value Pack at the Java JMX Console:

80

"

|£:| Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds. auncher start lﬂ@ﬂ
|£/ Connection| Window Help

= & X
Overview | Memory | Threads | Classes | vM Summary | MEEBHS‘ slm
IMImplementation Operation invocation
. com.sun.management
connector void resetStatistics | ()
java.lang

| java.util.logging

. javax.management.remote.rmi

org.apache.activemq

0
. ActionManager

@ Collector

@ CollectorStats

g S:,i’;a:;?:; uca ebe void dumpSessionOfAlliScenarios | ()

@ Server

@ valuePackManager
persistence-example-3.1

-6 g:aa:ISLﬂadEf’ void reloadAllScenarios | ()
) ows

[0

[T BB -

[# . MediationFlows
[+ | Scenarios
(=63 ValuePack

d0perations

Java.lang.String | deleteAllMediationFlows | ()

java.lang.String resynchallMediationFlows | ()

java.lang.String [statusAlMediationFlows | ()

Figure 22 - Java JMX Console: UCA for EBC Value Pack - Value Pack - Operations

The following table lists the operations that can be executed on the UCA for EBC
Value Pack using the Java JMX console:

Operation name Explanation

resetStatistics() Resets the statistics for the Value Pack

retractAllScenarios() Clears the Drools Working Memory of all the
scenarios of the Value Pack

dumpSession0fAllScenarios() Dumps the Drools Working Memory of all the
scenarios of the Value Pack

reloadAllScenarios() Reloads all rules files of all the scenarios of the
Value Pack

createAllMediationFlows() Creates all the mediation flows associated with
the Value Pack

deleteAllMediationFlows() Deletes all the mediation flows associated with
the Value Pack

resynchAllMediationFlows() Resynchronizes all the mediation flows

associated with the Value Pack

statusAllMediationFlows() Retrieves the status of all the mediation flows
associated with the Value Pack

81

Table 37 - Java JMX Console: UCA for EBC Value Pack - Value Pack - Operations

5.1.3.3 Monitoring UCA for EBC scenarios

Each scenario of a running UCA for EBC Value Pack has its own sub-folder at the
Java JMX Console, under the “uca_ebc/<value pack name>-<value pack
version>/Scenarios” folder. Each Scenario sub-folder is named after the Scenario.

The following screenshot shows the attributes available for a Scenario sub-folder
of a UCA for EBC Value Pack at the Java JMX Console:

- N
|£ Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start — - é@g

[£) Connection Window Help l:l El El
b

overview | Memory | Threads | Classes | v Summary| MEEEHS‘

. IMImplementation Attribute values

com.sun.management

connector Name Value
| java.lang Actions_Failed (]

. Java.util.logging CompressionRate
. Javax.management.remote.rmi Compression_AVC_Compressed
. org.apache.activemqg Compression_AVC_EfficiencyPercentage
= | uca_ebc Compression_AVC_Received
/ ActionManager Compression_SC_Compressed
@ Collector Compression_SC_EfficiencyPercentage
CollectorStats Compression_SC_Received
Dispatcher Filter_DateL: j dl 2014-04-24 13:04:50.617 +0200
Properties_uca_ebc Filter_NumberOfPassedEventsSinceStartup 4
Server Filter_NumberOfRej d i artup o
& VE‘UEPEC’(ME"‘EQEV‘ FlowPercentage 100.0%
| persistence-example-3.1 LogRules Ifalse
@@ ClassLoader Queue_CurrentSize o
| DBFlows Queue_DateLastHighWaterMark 2014-04-24 13:04:52.006 +0200
. MediationFlows Queue_DateLastPublish 2014-04-24 14:05:05.964 +0200
(= ! Scenarios Queue_DatelastSubscribe 2014-04-24 14:05:05.964 +0200
i =@ com.hp.uca.ebc.vp.examples.pt | [Queue_DateLastZeroed 2014-04-24 14:05:05.964 +0200
[E23A Queue_HighWaterMark 1
[#-Operations Queue_HighWaterMarksStillIncreasing false
@ ValuePack Queue_NumberZeroedSinceLastHighWaterMark 3
Queue_SizeHistory [java.lang.String[1]
Queue Totalobjects 4
Queue_TotalObjectsSincelastHighWaterMark 2
Status Running
StatusExplanation Scenario is running
StatusHistory java.lang.String[2]
'WM_CurrentNumberOfFacts 6
\WM_DatelastinjectedFact 2014-04-24 14:05:05.964 +0200
\WM_DateLastRemovedFact 2014-04-24 13:04:50.617 +0200
\WM_DateLastUpdatedFact 2014-04-24 14:05:08.226 +0200
\WM_InsertUpdateRetractRate 671.2792501542264
\WM_MaxNumberOfFactsSinceStartup 6
WM_MediationSynchronizationFlag ftrue
'M_MediationSynchronizationHistor: java.lang.String[2]

M_NumberOffactsSinceStartup
M_NumberOfRemovedFactsSinceStartup

M_NumberOfUpdatedFactsSinceStartup 21
WM_Watchdog_ExpireditemRate 7335.71702230862

R —T— .

Figure 23 - Java JMX Console: UCA for EBC Value Pack — Scenario - Attributes

Any Scenario of a UCA for EBC Value Pack can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of any Scenario of a UCA for EBC Value Pack
that are shown on the Java JMX console:

Attribute name Settable Explanation

Actions_Failed No The number of failed actions for the scenario

Compression_AVC_Compre NoO The number of AVC (Attribute Value Change)

ssed events compressed by the Compression
thread

Compression_AVC_Efficien NO The efficiency percentage of the

cyPercentage Compression Thread regarding AVC

(Attribute Value Change) events

Compression_AVC_Receive NO The number of AVC (Attribute Value Change)
d events received

Compression_SC_Compres
sed

Compression_SC_Efficienc
yPercentage

Compression_SC_Received

Filter_DateLastRejectedEv
ent

Filter_NumberOfPassedEv
entsSinceStartup

Filter_NumberOfRejectedE

ventsSinceStartup

FlowPercentage

LogRules

Queue_CurrentSize

Queue_DateLastHighWate

rMark

Queue_DateLastPublish

Queue_DateLastSubscribe

Queue_DatelastZeroed

Queue_HighWaterMark

Queue_HighWaterMarksStil

lincreasing

Queue_NumberZeroedSinc
elLastHighWaterMark

Yes

The number of SC (State Change) events
compressed by the Compression thread

The efficiency percentage of the
Compression Thread regarding SC (State
Change) events

The number of SC (State Change) events
received

The Date and Time of the last event that was
rejected by the scenario filter

The number of events that passed the
scenario filters since start-up

The number of events rejected by the
scenario filters since start-up

Percentage of events inserted into Working
Memory compared to the total of events
received by the Scenario

Flag (true/false) indicating whether scenario
specific Drools engine logging is
enabled/disable for the scenario

The current size (in number of events) of the
scenario events queue

The date and time of the last high water
mark of the Scenario events queue

Date and time of the last time an event was
added to the Scenario events queue

Date and time of the last time an event was
removed from the Scenario events queue to
be processed

The date and time of the last time the
Scenario events queue was empty

The value of the high water mark of the
Scenario events queue (in number of events)

Whether the high water mark of the Scenario
events queue is still increasing or not

The number of times that the Scenario
events queue was empty since the last high
water mark

83

Queue_SizeHistory

Queue_TotalObjects

Queue_TotalObjectsSincel

astHighWaterMark

Status

StatusExplanation

StatusHistory

WM_CurrentNumberOfFact

WM_DateLastInjectedFact

WM_DateLastRemovedFac

t

WM_DateLastUpdatedFact

WM_InsertUpdateRetractR

ate

WM_MaxNumberOfFactsSi
nceStartup

The history of the Scenario events queue size

The total number of “objects” that have been
added to the Scenario events queue since
start-up

The total number of “objects” that have
been added to the Scenario events queue
since the last high water mark

The status of the Scenario, either:

e Starting
e Running
e Degraded
e Failed

e Stopped

e Unknown

An explanation for the status of the Scenario

The full history of the Scenario statuses,
since it was first started

The current number of facts in the Drools
Working Memory of the Scenario

Date and time of the last fact inserted into
the Drools Working Memory of the Scenario

Date and time of the last fact removed from
the Drools Working Memory of the Scenario

Date and time of the last fact updated in the
Drools Working Memory of the Scenario

The rate of operations (insert/update/retract
fact) on the Drools Working Memory of the
Scenario in operations per second

The maximum number of facts in the Drools
Working Memory of the Scenario since start-

up

Attribute name

WM_MediationSynchroniz
ationFlag

WM_MediationSynchroniz
ationHistory

WM_NumberOfFactsSinceS
tartup

WM_NumberOfRemovedFa
ctsSinceStartup

WM_NumberOfUpdatedFac
tsSinceStartup

Settable
No

Explanation

The value of the Mediation Synchronization
Flag:

e True (i.e. the mediation flow is
synchronized)

e False (i.e. the mediation flow is
currently undergoing a
synchronization)

The history of the synchronization status of
the mediation flow

The number of facts that have been inserted
into the Drools Working Memory of the
Scenario since start-up

The number of facts that have been removed
from the Drools Working Memory of the
Scenario since start-up

The number of facts that have been updated
in the Drools Working Memory of the
Scenario since start-up

Table 38 - Java JMX Console: UCA for EBC Value Pack - Scenario - Attributes

The following screenshot shows the operations available for a Scenario sub-folder
of a UCA for EBC Value Pack at the Java JMX Console:

o hl
|2 | Java Monitoring & Management Console - pid: 8332 org.codehaus.classworlds.Launcher start E@ﬂ
|2/ | Connection Window Help - 8 x

Dverviewl Memoryl Threadsl Classesl VM Summary || MBeans’| ==

. IMImplementation
- | com.sun.management
. connector
java.lang
. java.util.logging
. javax.management.remote.rmi
. org.apache.activemq
uca_ebc

. ActionManager
@ Collector
@ CollectorStats
@ Dispatcher
@ Properties_uca_ebc
@ Server
@ ValuePackManager

persistence-example-3.1
@ ClassLoader
. DBFlows

. MediationFlows
. Scenarios

O EEEHEEE

-Attributes

Operations

[#@ ValuePack

< 1 |
=

=@ com.hp.uca.ebe.vp.examples.p

Operation invocation

void 0
boolean (po String)
void @]
void [resatstatus | ()
vord 0
void)
boolean @]
void 0

wvoid clearCompressionStats | ()

Figure 24 - Java JMX Console: UCA for EBC Value Pack - Scenario - Operations

85

The following table lists the operations that can be executed on any Scenario of a
UCA for EBC Value Pack using the Java JMX console:

Operation name

resetCounters()

reloadRulesFile(String)

retractAll()

resetStatus()
dumpFailedActions()

retractFailedActions()

reloadScenario()

dumpSession()

clearCompressionStats()

Explanation

Resets the statistics for the Scenario

Reload a specific Rules File of the Scenario

Parameter 1: The name of the Rules File

Clears the Drools Working Memory of the
Scenario

Resets the status of the Scenario
Dump all failed actions for the Scenario

Retracts all failed actions from the Drools
Working Memory of the Scenario

Reloads all rules files of the Scenario

Dumps the Drools Working Memory of the
Scenario

Resets the statistics regarding Compression

Table 39 - Java JMX Console: UCA for EBC Value Pack — Scenario - Operations

86

Chapter 6

UCA for EBC Advanced Troubleshooting

6.1 UCAfor EBC Logging Mechanism

The UCA for EBC logging feature is based on the log4j technology.

The main application logging mechanism is driven by the setting of the
${UCA_EBC_ INSTANCE}/conf/uca-ebc-log4j.xml log4jconfiguration
file.

Some other (specific) logging levels can be activated by setting some properties in
the ${UCA EBC INSTANCE}/conf/uca-ebc.properties file. These
additional logging levels are:

e Scenario rule execution log:

That allows logging scenarios rules execution in a dedicated file in order to
help debugging.

e C(ollector log:
That allows logging all alarms collected in a specific file.

The generated log files are located in the $ {UCA EBC_ INSTANCE}/logs
directory.

Note

Changes to the $ {UCA EBC_INSTANCE}/conf/uca-ebc.properties file
require a restart of UCA for EBC Server in order for the changes to be taken into
account.

Changes to the $ {UCA EBC_INSTANCE}/conf/uca-ebc-log4j.xml file
require either a reload of the Log4J configuration (through the uca-ebc-admin
command-line tool, or the UCA for EBC User Interface) or a restart of UCA for EBC
Server in order for the changes to be taken into account.

6.1.1 Standard application logging

Application logging is controlled by the $ {UCA EBC_ INSTANCE}/conf/uca-
ebc-log4j.xml logdj configuration file.

The CONSOLE, FILE, and DB appenders are used for controlling application logging
to the console, standard application log file or UCA for EBC User Interface. The
standard application log file is the following (by default):

${UCA EBC INSTANCE}/logs/uca-ebc.log.

The ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml canbe modified
to control:

e what kind of events get logged

e whatis the trace level for each event type (event type are defined by Java
package names)

e where the events are logged (what appenders are used)

87

The provided ${UCA EBC INSTANCE}/conf/uca-ebc-log4]j.xml file
predefines a set of application classes for which the logging can be activated or not.

6.1.2 Collector logging

The Collector raw logging feature is the possibility to log in a file the exact alarm
list that is received by the collector.

This logging featurecan be enabled/disabled at application start-up by setting the
collector.logger.enabled property to t rue or false inthe
${UCA EBC INSTANCE}/conf/uca-ebc.properties file.

By setting this property to t rue all alarms going through the Collector will be
dumped in either one of the following files before any other treatment if done on
the received alarms:

e the ${UCA EBC INSTANCE}/logs/uca-ebc-collector.log file
for alarms that are not rejected by the Collector

e the S{UCA EBC INSTANCE}/logs/uca-ebc-collector-
rejected. logfile for alarms that are rejected by the Collector

Alarms can be rejected by the Collector for either one of the following reasons:

e The JMS message containing the alarms does not have the proper body
format: the expected JMS message body format expected by the Collector
is Text

e The content of the JMS message cannot be converted to Alarm objects
because the XML format of the alarms inside the JMS message is not
compliant with the UCA for EBC Alarm format defined in the
${UCA EBC HOME}/schemas/uca-expert-alarm.xsdfile

o (Collector message validation is turned on (the
collector.messages.validationpropertyissetto trueinthe
${UCA EBC INSTANCE}/conf/uca-ebc.properties file),and
the alarms in the JMS message received by the Collector failed validation

Alarms are dumped directly in XML format in the uca-ebc-collector. log
file. On the other hand, the uca-ebc-collector-rejected. l1ogfile has the
format of a log file.

6.1.3 Scenario logging

6.1.3.1 Scenario logging

In order to be able to configure how log messages coming from the Scenario rule
files (drl files) are processed (what trace level and appenders are used), a specific
logger must be added to the ${UCA EBC INSTANCE}/conf/uca-ebc-
log4j.xml configuration file.

This logger is defined as follows:

<logger name="<scenario name>" additivity="false">
<level value="INFO" />
<appender-ref ref="CONSOLE" />
<appender-ref ref="DB" />

88

</logger>

Where <scenario name> is the name of the scenario for which you want to configure
the logging. The <scenario name> has to be identical to the <scenario name>
defined inthe valuePackConfiguration.xml file of your Value Pack.

The definition of your scenario specific logger can be added to the “Detailed Traces
for Value Pack Scenarios” section of the ${UCA EBC INSTANCE}/conf/uca-
ebc-log4] . xml file. This section is identified by comments in the file.

The following screenshot shows an example of how to configure specific logging in
the uca-ebc-log4j.xml file:

nent the following in order to show

ref="CONSOLE" />

<appender-ref ref="DE" />

W W o WM oD R -]
LS R T - T T R S P R e TV - B & SR

</logger>

a3 ——>
94
95 <logger :ane="my55dnario" additivity="false">
13 <level walue="INFO" />
37 <appender-ref ref="CONSCLE" />
98 <appender-ref ref="DB" />
g9 </logger>
100
101 <!—-
102 additivity="false">
103

104

amc

Figure 25 - Configuring scenario specific logging in the uca-ebc-log4j.xml file

6.1.3.2 Scenario exceptions logging

It is possible to define a specific logger (one for each scenario) in the
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml configuration file for
logging the exceptions thrown in the action part of the rules of a scenario.

By default, these exceptions are logged using the scenario logger as defined in the
previous chapter: 6.1.3.1 “Scenario logging”.

If you want exceptions log messages to be handled by a specific logger different
from the scenario logger, you can define it in the uca-ebc-1og47j . xml
configuration file. The logger should be named “myScenario.exceptions”
(change myScenario to the actual name of your scenario as per the
ValuePackConfiguration.xml file).

The following screenshot shows an example of how to configure a specific scenario
exception logger in the uca-ebc-log4j.xml file:

89

<!l-=

Uncomment the following in order to show
detailed traces for your value pack scenarios rules exceptions
You need to update the name="myScenario.exceptions" attribute
with the actual name of your scenarioc + ".exceptions”
-
<logger name="myScenario.exceptions" additivity="false">
<level value="INFO" />
<appender-ref ref="CONSOLE" />
<appender-ref ref="FILE" />
<appender-ref ref="DB" />
</logger>

Figure 26 - Configuring scenario exceptions specific logging in the uca-ebc-
log4j.xml file

In versions of UCA for EBC prior to UCA for EBC V3.2, these scenario exceptions were
logged using either
"com.hp.uca.expert.scenario.internal.ScenarioImpl"or
"com.hp.uca.expert.watchdog.WatchdogThread"loggers depending on
whether the Scenario Thread or Watchdog Thread was executing the rules when the
exception occurred.

With to UCA for EBC V3.2 onward, these scenario exceptions are now logged to
“myScenario.exceptions”.

There’s some commented XML code in the uca-ebc-10g47 . xm1 file delivered
with UCA for EBC V3.2 that can be used to easily create a
“myScenario.exceptions”logger.

Note

&~ please refer to section 3.2.3 “uca-ebc-log4j.xml file configuration” to learn
more about the configuration of the $ { UCA EBC INSTANCE}/conf/uca-
ebc-log4j.xml file

6.1.3.3 Scenario rule execution logging

Rule execution can be logged per scenario in a dedicated log file. Logging can be
enabled/disabled at application start-up by setting the engine.logger.enabled
property to true/false in the $ {UCA EBC INSTANCE}/conf/uca-
ebc.properties file.

This property controls scenario specific rule execution logging for all scenarios.

Properties like engine.logger.interval (which controls the interval in milliseconds at
which rule execution information is written to the log file) can also be set. These
properties affect all scenario specific rule execution log files.

Note

&~ please refer to section 3.2.1 "uca-ebc.properties file configuration”, especially

Table 15 “ - Rule Engine logger properties in the uca-ebc.properties file”, for more
information on how to configure the $ {UCA EBC INSTANCE}/conf/uca-
ebc.propertiesfile.

90

Changes to the $ {UCA_EBC_INSTANCE}/conf/uca-ebc.properties file
require a restart of UCA for EBC Server in order for the changes to be taken into
account.

Scenario-specific rule execution log files are named LogEngine <scenario
name>.logandare located inthe $ {UCA EBC_ INSTANCE}/logs directory.
Scenario-specific engine log files contain standard Drools engine log entries
specific to a scenario.

At runtime, it is also possible to enable/disable scenario specific rule execution
logging for just one scenario by using either the uca-ebc-admin command-Lline tool
or the Java console.

Below is a screenshot showing how to enable/disable scenario specific rule
execution logging for just one scenario by using the Java console:

| 4| Java Monitering & Management Consale - pid: 6456 com.hp.uca.commen.aunch.UcaLauncher com.hp.uca.expert engine.Bootstrap = | 5 jSm|
|£] Connection Window Help —_I[E]lx
Overview | Memry | Threads | Classes | v summary | MBeans =
-], Mimplementation Attrbute values
com. sun. management
——— Name Value
javadang Actions Falled 0
Java.uti logging Fiter_Datel astRejectedEvent 20120103 17:04:58.852 40100
B uca_expert Filter_NumberOfRe) up 0
| ActonManager FlowPercentage INo Event recaived
@ Collector LogRules true
+1-18 Dispatcher Logscenario [Falee
- MainClassLoader Queue_Curentsize o
My-Correlation-project-1.0 Queue_DateLastHighiaterMark 20120109 17:04:58.851 40100
Properties_uca_expert ‘Queue_DateLastPublish 2012-01-09 17:04:58.851 +0100
@ ValuePackManager Queue DateL astSubscribe 20120109 17:04:58.851 40100
S 1, lef-example0.12 Queue DateLastzeroed 20120109 17:04:56.851 0100
@ ClassLoader Queue_HighWaterMark 0
-} Scenarios Queue_HighWaterMarkStillncreasing e
=@ com.hp.uca.expert.vp.lef.grouping. Grouping Queue_Numb igh/ 0
Queue _SizeHistory java.ang.String[0]
Operatians Queue_TotalObjects o
B com.hp.uca.expert,vplef.nactivity.Tnactivity | | Queve TotalObjectsSincel astrighWaterbark 0
m.hp.uca.expert.vp.lef statistical Statistical | | Status Running
com.hp. Lica. expert.vp. lef. imewait. TmeWait
@ com.hp.uca.expert.vp.lef.updown. UpDown StatusHistory java.lang.String[2]
@ valuePack WM _Currenthumber OfFacts &
WM _DateL astInjectedFact 20120109 17:04:58.852 40100
WM _DateLasRemavedract 20120109 17:04:58.852 40100
WM DateL astipdatedFact 20120109 17:04:58.852 40100
WM _Inser tUpdateRetractRate 0.0
(WM _MaxNumberOfFactsSinceStartup 0
WN_MediationSynchronizationFlag [rue
WM_MediationSynchronizationHistory java.lang.String[0]
WN_NumberOfFactsSinceStar tup 0
WM_Number ORemevedFacsSinceStar tup 0
WM _NumberOfupdatedFactsSinceStartup 0

Figure 27 - Java JMX Console: Enabling/Disabling scenario specific rule
execution logging for one scenario

Scenario specific rule execution log files are compatible with the JBoss Rule Audit
feature in Eclipse IDE.

The JBoss Rule Audit panel comes with the JBoss Drools Eclipse plugin. You can
view this panel by selecting the JBoss Drools perspective in Eclipse IDE as shown
below. The JBoss Rule Audit panel should be part of the JBoss Drools perspective
unless it has been removed.

91

8] Droals - Eclipse - =68 X

- - . T e e~ Bl A . =
File Edit Navigate Search Project Run Window Help
ri- O~ @9 $-0 Q- HET ED AT i H-HUrvoroy 21 [Drools | 3 Debug &'Java
, 52 Outline =
J An outline is not available.
= Click to activate the
% Drools perspective
)
JBoss Rule Audit
panel

0 Audit 21 Jo Junit| & Cansole | 3= Call Hierarchy $ W=
2009-09-16T12:00:00.000+02:00, £=BOX B1, type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, 05=NOT_ACKNOWLEDGED, ps=NOT_HAMDLED, ins=t|
= Activation created: Rule Any Not =1, t=2009-09-16TL2:00: +02:00, e=BOX BL, type=COMMUNICATIONS ALARM, s=MINOR, ns=NOT_CLEARED, 0s=NOT_ACH
+ & Actvation executed: Rle Any Not Acknowledged Alarm =id=1, t=2009-03-16T12:0000000+0200, e=B0X BL. type=COMMUNICATIONS_ALARM,5=MINOR, 15=NOT_CLEARED, 05=NOT_ACKY
Object updated (5 2009-09-16T12:00:00.000+02:00, e=BOX B1. type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, 05=ACKNOWLEDGED, ps=NOT_HANDLED, ins=tnu
Object updated (5 09-09-16T12:00:00.000+02:00, £=BOX B1, type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, 0s=TERMINATED, ps=HANDLED, ins=true, avc=false, 1
“ Activation created: Rule Any TO_BE_RETRACTED Alarm 1=2009-03-16T12:00:00.000+ 0200, e=BOX B1, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 0s=TERMINA
= Activation created: Rule Any Terminated Alarm a=id =1, t=2009-09-16T12:00:00.000+02:00, e =BOX 81, type sCOMMUNICATIONS_ALARM, s=MINOR. ns=NOT_CLEARED, os=TERMINATED, ps
4+ % Activation executed: Rule Any Terminated Alarm a=id=1, 1=2009-09-16T1200:00.000+02:00, e=BOX B1, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 0s=TERMINATED, ps=
* Object inserted (6} it=TEST_END val=true desc=this is the end of the test
4+ % Activation executed: Rule Any TO_BE_ RETRACTED Alarm a=id=1, t=2009-09-16T1200:00.000+02:00, e=BOX B1. type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, s=TERMINAT|
= Object inserted (7). idgarbageGo val«true desca(Go for garbage collection rule

£ Problems | T Properties
+ * Objectinserted (S} id=1

4 1 b

Figure 28 - Selecting the JBoss Drools perspective in Eclipse IDE by clicking on
the JBoss Drools perspective icon

Alternatively, you can switch to the JBoss Drools perspective by going to the
“Window” -> “Open Perspective” Eclipse IDE top menu, and selecting the “Drools”
perspective, as shown below.

i8] Drools - Eclipse CEIW e e I Y ——— -

File Edit Navigate Search Project Run Window] Help
f‘j - @ - @ Q - iﬁ New Window _Q'-' -) w S w

MNew Edit:
f# Package Expl 2 ‘?E.Navigatoﬂ el & or

:_:] Open Perspective » [Other i

Show View 4

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

Mavigation 4
Preferences
r q
[.] Open Perspective B_lg
-

<> CollabNet
E=CVS Repository Exploring
(3 Database Debug
(i Database Development
% Debug
|@ Drools |
11 Guvnor Repository Exploring
& Java |
& Java Browsing
92 Java EE (default)
T2’ Java Type Hierarchy
&)avaScript

< jBPM

n

" [OK J [Cancel I

L

Figure 29 - Selecting the JBoss Drools perspective in Eclipse IDE by using the
Eclipse IDE menus

92

If the Drools Audit panel is not shown, you can select it by going to the “Window” ->
“Show View” Eclipse IDE top menu, and selecting the “Audit” view from the Drools
group.

:.—_] Drools - Eclipse

. - -— -

File Edit Navigate Search Project Run |Window | Help
s~ O~ & D~ B New Window & - - - [El 4 -
[# Package Expl 2 % Navigator| fs | RS Ee
: Open Perspective 4
¢ Show View r|) Audit
Customize Perspective. £ | Gl ey
AR Bl Console Alt+Shift+Q, C
SRR e [Declaration Alt+Shift+Q, D
Rezei Mem peniies @ Javadoc Alt+Shift+Q, J
Close Perspective Ju JUnit
Close All Perspectives . Navigator
Navigation ,| 8 Outline Alt+Shift+Q, O
[Package Explorer Alt+Shift+Q, P
Preferences [Problems Alt+Shift+Q, X
=3 Progress
B Properties
%) Rules
¥ Tasks
e Type Hierarchy Alt+Shift+Q, T
Other... Alt+5hift+Q, Q
@Show View = X

type filter text

(= Data Management =
= Debug
4 &= Drools
) Agenda
Q Audit
) Global Data
@ Process Instance

111

G Process Instances
@ Rules
) Working Memory
= Google
= Ginmar

[OK l [Cancel]

Figure 30 - Showing the JBoss Drools Audit view in Eclipse IDE

To display the contents of a scenario specific rule execution log file using Eclipse
IDE, you need to load the file inside the Audit panel.

You can open a logEngine_<scenario name>.log file in the Audit panel by using drap
and drop of the file into the Audit panel as shown in the screenshot below.

[2! Problems | &l Properties |) Audit &2 . Ju JUnit| & Console| 23 Call Hierarchy =8

gine_skeleton.log

Figure 31 - Eclipse IDE: Using drag and drop to open a Drools engine log file in
the Drools Audit panel

Alternatively you can open a Drools engine log file in the Drools Audit panel by
clicking on the “Open log” icon of the Drools Audit panel as show below:

93

=0

[Problems | = Properties [4 Audit 52 . Ju JUnit| B Console| 2 Call Hierarchy

Figure 32 - Eclipse IDE: Using the “Open log” icon to open a Drools engine log file
in the Drools Audit panel

The following screenshot shows an example of how contents of a scenario specific
rule execution log file is displayed in the Audit panel of the Drools perspective in

Eclipse IDE:

. =
= Droals - Eclipse Platform — o
File Edit Navigate Search Project Run Window Help
nhd Qv B0 Q- EEGEY OO A~ B RS CRCRE &[] Droce B s >
21 Problems | E= Propertes | §] Audit £2 . ## Junit| B Console N
&
H a0 Object inserted (1): <Alarm xmins="http://hp.com/uca/expert/xT33Alam"> <sourc /sourc dentifier-12301 < /identif lass»B0; "
= Activation created: Rule Store not cleared Alarm = <Alarm xmlns="http://hp. p Jarm'"> <sourcs i Jsourcs dentifier>12301 </identif d
S 4w Objectinserted (21 <Alamm amins="http://hp.com/ucalexpertsT33Aar ourc i ourceldenti dentifier>12302« fidentifi lass>BOK<,
< Activation cancelled: Rule Store not cleared Alarm a= <Alarm xmins= com/uca/expert/sT33Alarm"> <sourceldentitier src< /sourceldentitier> <identifiers 12301 </identifier> <originatingManage, &
4 ® Objectinserted (3): <Alarm xmlns="http://hp.com/uca/expert/s i dentifier>12303< fidentifi lass»BOK, % I
= Activation created: Rule Store not cleared Alarm a=<Alarm xmins="1 . ol larm'" <sourcs Jsourcs dentifiers1
4 0 Objectinserted (4): <Alarm xmlnc="http://hp. i ourc Jsource dentifier>12304</identifi lass>BOXs,
= Activation created: Rule Store clearance a= <Alarm xml com/uca/expert/xT33Alarm" > <sourceldentitiers src</sourceldentitier> <identifier> L2304 < /identifier> <originatingManagedEntityCla
Activation executed: Rule Store clearance a=<Alarm xmins="ht .com/uca/expert/xT33Alam’ > <sourceldentit ourceldenti dentifier»12304< fidentfi Jass|
4 = Objectinserted (5): <Alarm xmins="http://hp.com/ucatexpert/x733Alarm" > <sourc i Jsourc i dentifier>12305< fidentifi lass»BOK,
=) Activation created: Rule Store not cleared Alarm a=<Alarm xmins="http://hp. il larm" <sourcs Jsourc: dentifier-12305+ identifi
4 0 Objectinserted (6): <Alarm xmins="http://hp.com/uca/expert/x133Alar ourc Jsource dentifier>12306</identif lass>BOXs,
¢ Activation cancelled: Rule Store not cleared Alarm a= <Alarm xmlns="http://hp.com/uca/expert/xT33Alarm"> <sourceldentitier> src< fsourceldentitier> <identifier> 12303</identifier> <originatingManage
4 # Activation executed: Rule Store not cleared Alarm a=<Alarm xmlns="http://hp.com/uca/expert/xT33Alarm"> <sourcy identifier-12303</identfi
4 ® Objectinserted (7): <Alarm mins="http://hp.com/uca/expert/T33Alarr ourceldenti /sourceldentit d 12307« /identffi Jass>B0!
=) Activation created: Rule Store not cleared Alarm a=<Alarm xmins="http://hp. fexpert/x133Alarm’ > <sourc Jsourc: dentifier-12307 < identifi
Activation executed: Rule Store not cleared Alarm a=+<Alarm xmlns="http://hp.com/uca/expertfxT33Alarm"» <sourc dentifier-12307+</identif
« 11 r
6 s Q

Figure 33 - Eclipse IDE: Viewing scenario rule execution logs

Scenario specific rule execution log files contain Drools rule activation information
in addition to the insertion/update/deletion of objects in Drools working memory.

Besides the Audit panel, the Drools perspective in Eclipse IDE also provides the
Agenda and Working Memory panels which give information on the planned rule
execution schedule (Agenda panel) and the list of all the objects in the Working
Memory (Working Memory panel) of a Drools Engine.

You can select the Agenda or Working Memory panels by either switching to the
Drools perspective or going to the “Window” -> “Show View” Eclipse IDE top menu,
and selecting the “Agenda” or “Working Memory” view from the Drools group, as
shown below.

94

E.] Drools - Eclipse — — —
File Edit Navigate Search Project Run |Window | Help
g O~ & 9~ B New Window § - - - = -
New Edit:
[# Package Expl ¥ “_% Navigator| 72 | e sder
: Open Perspective 4
5 Show View »| 9 Agenda
9 Audit
Customize P tive..
Sus o;mze etrspe; ve & Call Hierarchy
SRS B Console Alt+Shift+Q, C
Reset Perspective... E Declaration Alt+Shift+Q, D
Close Perspective @ Javadoc Alt+Shift+Q, J
Close All Perspectives Ju JUnit
Navigation » | == Navigator
8= Outline Alt+5hift+Q, O
Preferences ¥ Package Explorer Alt+Shift+Q, P
2l roblems t+Shift+Q,
[Z Probl Alt+Shift+Q, X
=3 Progress
E Properties
2 Rules
& Tasks
s Type Hierarchy Alt+Shift+Q, T
%) Working Memory
Other... Alt+Shift+Q, Q@

Figure 34 - Showing the JBoss Drools Agenda or Working Memory view in Eclipse

The Drools Agenda and Working Memory views are useful in debug mode in Eclipse,
for example, when running the JUnit tests of a Value Pack in debug mode in Eclipse.
You put breakpoints in either the rules or java code of a Value Pack (by double-
clicking left of the line number of a line of rules or java code) then execute the JUnit
tests of a Value Pack in debug mode by right-clicking on the JUnit test file and
selecting the “Debug As” -> “Drools JUnit Test” context menu item, as shown below

getProducer().sendAlarms (ALARM_FILE);

waitingForTheEndTe

closeRuleLogFiles(

checkTestResult(ge

LogHelper. exit(Log

2. Problems = Properties| Q) Audit| T |

™

Open Declaration
Open Type Hierarchy
Open Call Hierarchy

Show in Breadcrumb
Quick Outline

Quick Type Hierarchy
Open With

Show In

Copy Qualified Name
Paste

Quick Fix
Source

Refactor

Local History
References
Declarations
Add to Snippets.
Run As

Debug As
Profile As
Validate

Team

Compare With
Replace With
Google

Preferences.

F3 |@*SECOND);
|
CtrisAltsH |
Alt+Shift+B
Ctri+O
Ctri+T

Alt+Shift+W »
k

Ctri+V

Ctri+1
Alt+Shift+S*
AltsShift+T+

" [Call Hierarchy

¥ 1Debug on Server
U 2 Drools JUnit Test
Ju 3 JUnit Test

+| @ 4 Web Application

»| @ 5 Web Application (running on an external server)

Debug Configurations.

L Insert 29:8

RN e W

Alt+Shift+D, R

Alt+Shift+D, T

Figure 35 - Running a JUnit Test of a Value Pack in debug mode in Eclipse IDE

The execution will pause once the first breakpoint is encountered. Once the
execution is paused you can inspect the contents of the Drools Working Memory by
looking at the Working Memory panel, as shown below:

95

Bl Console ¥ Tasks | 3¢ Call Hierarchy [§) Working Memory &3 . Q) Agenda

> a [0]= SynchronizationFlag (id=5849)

+ & [1]= Alarm (id=5850)

& [2]=TickFlag (id=5851)

» a [3]= GarbageCollectionFlag (id=5852)
+ a [4]= AsyncActionFlag (id=5853)

Figure 36 - Sample view of the Drools Working Memory panel in Eclipse IDE

The Drools Working Memory panel gives information on the list of all the objects in
Working Memory: Alarms, Flags, custom objects, ...

You can also inspect the Drools Agenda by looking at the Agenda panel, as show
below:

L] Agenda View Warking Memory View | Global Data View +h i

= & MAIN[focus] = AgendaGroupImpl (id=1123)
SRFS (] = Agendaltem (id=1196)

+ & ruleMame= "Sample rule”
+ & message= "TDearest user I”

Figure 37 - Sample view of the Drools Agenda panel in Eclipse IDE

The Drools Agenda panel gives information on the planned rule execution schedule.
Note

The Drools perspective in Eclipse IDE is provided by Drools plug-in for Eclipse.

For more information on how to install the Drools plug-in for Eclipse IDE please
refer to: [R2] HP UCA for EBC Value Pack Development Guide

6.1.4 Drools logging

6.1.4.1 Configuring the log for Working Memory Agenda and Event Listeners

Inthe ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xmlLog4)
configuration file for UCA for EBC, you can configure the log level and appender
references for two classes that monitor Drools Engine Agenda and Drools Working
Memory for all the scenarios of all the Value Packs running on UCA for EBC.

You can configure the log for these two classes by updating the following section in
the ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xmlLog4)
configuration file:

zuw COPPTHUTLTLITL LTI LAaOwLE

269 <appender-ref ref="FILE" />

270 <appender-ref ref="DB" />

271 </logger>

272§ <logger name="com.hp.uca.expert.engine.rulesession.WMAgendaEventListener”
273 additivity="false">

274 <level valus="DEBUG" />

275 <appender-ref ref="COMNSOLE"™ />

276 <appender-ref ref="FILE" />

277 <appender-ref ref="DB" />

278 </logger>

279

280 <logger name="com.hp.uca.expert.engine.rulesession.WMEventListener"”
281 additivity="false">

282 <level wvaluse="DEBUG" />

283 <appender-ref ref="CCHNSOLE" />

284 <appender-ref ref="FILE" />

285 <appender-ref ref="DB" />

286 </logger>

287

288 <logger name="com.hp.uca.expert.lifecycle.LifeCycleAnalysis™
289 additivity="false">

2390 <level valus="DEBUG" />

281 sareean Aav_waf waFf=0rrdISnT B f

Figure 38 - Configuring the log for Working Memory Agenda and Event Listeners

Setting the log level to DEBUG for the WMAgendaEventListener will add log
messages to the log(s) every time the Agenda of the Drools Engine of a Scenario is
updated, i.e. when:

¢ Rule activations are created
¢ Rule activations are canceled
o Beforerules are fired

o After rules are fired

Setting the log level to DEBUG for the WMEventListener will add log messages to
the log(s) every time the Working Memory of the Drools Engine of a Scenario is
updated, i.e. when:

e Objects are inserted into Working Memory
o Objects are updated in Working Memory

e Objects are retracted from Working Memory

Note

6.1.5 Enabling these logs can be complementary to using the
scenario specific Drools engine logs that are described in
section: 6.1.2 “Collector logging

The Collector raw logging feature is the possibility to log in a file the exact alarm
list that is received by the collector.

This logging featurecan be enabled/disabled at application start-up by setting the
collector.logger.enabled property to t rue or false inthe
${UCA EBC INSTANCE}/conf/uca-ebc.properties file.

By setting this property to t rue all alarms going through the Collector will be
dumped in either one of the following files before any other treatment if done on
the received alarms:

e the ${UCA EBC INSTANCE}/logs/uca-ebc-collector.log file
for alarms that are not rejected by the Collector

97

e the ${UCA EBC INSTANCE}/logs/uca-ebc-collector-
rejected. logfile for alarms that are rejected by the Collector

Alarms can be rejected by the Collector for either one of the following reasons:

e The JMS message containing the alarms does not have the proper body
format: the expected JMS message body format expected by the Collector
is Text

e The content of the JMS message cannot be converted to Alarm objects
because the XML format of the alarms inside the JMS message is not
compliant with the UCA for EBC Alarm format defined in the
${UCA EBC HOME}/schemas/uca-expert-alarm.xsdfile

o (Collector message validation is turned on (the
collector.messages.validationpropertyissetto trueinthe
S${UCA EBC INSTANCE}/conf/uca-ebc.properties file), and
the alarms in the JMS message received by the Collector failed validation

Alarms are dumped directly in XML format in the uca-ebc-collector. log
file. On the other hand, the uca-ebc-collector-rejected. 1ogfile has the
format of a log file.

Scenario logging”

6.2 Managing the Drools engine(s)

Each scenario has its own Drools rule engine for processing the Drools rules defined
in the rules files of the scenario. The following operations can be performed on the
working memory of a scenario, without having to restart either UCA for EBC or any
Value Pack:

e Dumping the Working Memory
e (learing the Working Memory
¢ Reloading the Rules

6.2.1 Dumping the Working Memory

Dumping the Working Memory of a scenario dumps the complete list of object
(Facts) currently in the working memory of a Scenario to the log(s).

Dumping the Working Memory of a scenario can be performed using the Java JMX
Console at the Scenario level by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to dump the working memory at the scenario
level:

98

4| Connection Window Help .

3

erviews | Memory | Threads | Ciasses | VM Summary| MBeans |

. Action Operation invocation
. IMImplementation
. com.sun.management void [resetCounters | ()
. connector
. jova.lang
. Jova.utillogging

e st boolean [oigadRulesfile | (po| string)

uca_ebc

M -8 B (o

FEEEE

| ActionManager
3 Collector
© Dispatcher vl 9]
@ Properties_uca_ebc
@ Server
@ ValuePackManager 4

| pd-example-3.0-5P2 Vol 9]
(@ ClassLoader

MediationFloves
(£ Scenarios

=@ com.hp.uca.expert.vp.pd.Probl void [dumpFailedActions | ()

Attributes

(Operations

@ valuePack

T

void [retractFailedActions | ()
0

g

oolean | reloadScenario | ()

[ampsesson | ()

< I | »

Figure 39 - Java JMX Console: Dumping the working memory of a Scenario

Dumping the Working Memory of a scenario can also be performed at the UCA for
EBC User Interface in the Scenario / Monitoring panel, as shown in the following
screenshot:

NS

Logout | Hep ~|SIH

UCA for Event Based Correlation

d-example-3.0-572 > Ve Pack > Uontoring
- Moniloring. - Configuraion Troubleshoofing

L | Value Pack : pd-example-3.0-5P2
L | @ 2 5cenaros are running Stop | Resynchronize
Yol

Scenarios List

Scensrio Status Status Explanation Actons

comnp.uca expert vp.pd ProdlemDetection @ scemercmrunong Dump WM | | Clear WM | |Reload | |Reset Status

Modiation Fiows List

Wedaton Flows Status _ Status Expanation Actons
Flowt @ Ao Stop | |Resynchronize
Fowz @ Acwe Stop_ |Resynchronize
Flow © e Stop | |Resynchronge

B ™ (7] 04.18:45 Notification: ValuePack pd-exampie- Running

Figure 40 - UCA for EBC User Interface: Dumping the working memory of a
scenario

Note

%~ For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide®” For more information on how to dump the
working memory of a scenario using the Java JMX Console, please see the section:
5.1.3.3 “Monitoring UCA for EBC scenarios”

99

6.2.2 Clearing the Working Memory

Clearing the Working Memory of a scenario can be necessary at times when you
want to start fresh with your scenario. This operation may or may not be followed
by a resynchronization of the mediation flow of the Value Pack that the scenario
belongs to, in case you need you scenario to receive the current list of events
(Alarms) from the mediation layer or not.

Cleaning the Working Memory of a scenario can be performed using the Java JMX
Console at the Scenario level by going to the “MBeans” tab of the Java Console and

navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to clear the working memory at the scenario

level:

£ Connection Window Help

Overview | Memory | Threads | Classes | vM Summary| MBeans

x

Action
IMImplementation
com.sun.management
connector

java.lang

java.utillogging
Javax.management.remote.rmi
org.apache.activemq

uca_ebc

ActionManager

T B - B 6

Dispatcher
Properties_uca_ebc
Server
[ValuePackManager
- L. pd-example-3.0-5P2
@ ClassLoader
MediationFlows
. Scenarios
=@ com.hp.uca.expert.vp.pd.Frab
[i}-Attributes

@ valuePack

< I »

Operation invocation

void [resetcounters | ()
boalean (po
void [retracall] ()
it it] ()
o 0
vod 0
vod 0
boolean 0

s [ampsemen |0

String

Figure 41 - Java JMX Console: Clearing the working memory of a Scenario

Cleaning the Working Memory of a scenario can also be performed at the UCA for
EBC User Interface in the Scenario / Monitoring panel, as shown in the following
screenshot:

100

=E X

Logout. Hep ~ =L

po-example-3.0-5P2 > Value Pack > Wonitoring

'Y Monitering Configuration Troublesheoting

Value Pack : pd-example-3.0-SP2

@ 21 5cenarios are running. Stop | |Resynchronize

Status Status Explanation Actions.

comhp.uca.expert vp.pd ProblemDete ction [~] Scena Dump WM | Clear WM | Reload | [Reset Status

Mediation Flows List

Mediation Flows

m

atus Explanation Actions.
Flow1 Active Stop | [Resynchronize

Flow2 Stop | [Resynchronize

000

Flow3 Active Stop | [Resynchronize

[™51 04:18:45 Notification: ValuePack pd-example-3.0-SP2 - Running

Figure 42 - UCA for EBC User Interface: Clearing the working memory of a
scenario

Note

" For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide™®~ For more information on how to clear the

working memory of a scenario using the Java JMX Console, please see the section:
5.1.3.3 “Monitoring UCA for EBC scenarios”

6.2.3 Reloading therules

Each scenario of a Value Pack contains a list of Drools rules files or Drools template
rules files (template rules file are similar to standard rules file but use an extra
parameters file).

Each and all of the rules files (and template rules files) can be modified at runtime
and reloaded without restarting UCA for EBC or any individual Value Pack so that
the new rules files get used right away in the Drools engine of the scenario.

The process for reloading the rules files is the following:

e Update the rules files, template rules files, and template parameters files as
you wish in the deployment directory of the Value Pack:
${UCA EBC INSTANCE}/deploy/<value pack name>-<value
pack version>

e Reload the rules of a scenario using either the uca-ebc-admin command-line
tool (with the -r or --reload option), the Java JMX Console or UCA for EBC
User Interface

Reloading the rules of a scenario can be performed using the Java JMX Console at
the Scenario level by going to the “MBeans” tab of the Java Console and navigating
to the “uca_ebc/<value pack name>-<value pack version>/scenarios/<scenario
name>[operations” folder.

The following screenshot shows how to reload rules files at the scenario level:

101

[£] Connection Window Help e I =
Overview | Memory | Threads | Classes| vM Summary| M8eans =

Action Operation invocation
IMImplementation

com.sun.management void [resetCounters | ()

connector

javalang

java.util.logging

Jjavax.management.remote.rmi boolean (po String)
org.apache.activemq

uca_ebe

ActionManager
@ Dispatcher retractAll | ()
@ Properties_uca_ebc
Server

@ ValuePackManager 0
[+ ! pd-example-3.0-5P2 L resetStatus | ()
@ ClassLoader

[L. MediationFlows
-y Seenarios

om.hp.uca.axpert.vp. pd.Probl void [dumpFailedActions | ()

[ValuePack

void [retractrailedactions | ()
void | clearcompressionstats | ()
0

o [amgsesm |

< 1] b

Figure 43 - Java JMX Console: Reloading the rules of a Scenario

The same operation can be performed for all the rules files of all scenarios of one
Value Pack, as shown in the following screenshot:

|£l Connection Window Help _ a x
overview | Memory | Threads | classes | v summary| MBeans =

Action Operation invocation

. IMImplementation

. Com.sun.management void)
connector
java.lang
java.util.logging

javax.management.remote.rmi d
org.apache.activemq o retractAllScenarios | ()

ca_ebc

ActionManager

Collector

Dispatcher void [qumpSessionofallscenarios | ()
Properties_uca_ebc

Server

ValuePackManager
d-example-3.0-SP2
@ ClassLoader void)
MediationFlows
Scenarios
(=@ ValuePack
-Attributes

et 1 [csmsaimedssontons ()

ptr 15 [it

prtrs 105 [ottt |

prtry 3 [smngnios

Figure 44 - Java JMX Console: Reloading the rules of all Scenarios of a Value Pack

Reloading the rules of a scenario can also be performed at the UCA for EBC User
Interface in the Scenario / Monitoring panel, as shown in the following screenshot:

102

ﬁﬁ\ UCA for Event Based Correlation

pd-example-3.0-572 > Value Ps

'S Moniloring Gonfiguration Troubleshooting

AL Value Pack: pd-example30.572

PO R Y T———

ol

" Stop | [Resynchronize

Scenario Status Status Expianation Actions.

com hp.uca expert vp.pd ProblemDetection @ scenarwis unning Dump W | [Clear Wi | | Reload | Reset Status

nnnnnn

00

Active Stop | |Resynchronte

rrrrr

Fowa @ e Stop| [Resynchronze

[™ [T 04:18:45 Notification: ValuePack pd-example-3.0-SP2 : Running

Figure 45 - UCA for EBC User Interface: Reloading the rules of a Scenario

Note

" For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide”®~ For more information on how to reload the

rules of a scenario using the Java JMX Console, please see the section: 5.1.3.3
“Monitoring UCA for EBC scenarios”

¥~ For more information on how to reload the rules of a scenario using the uca-
ebc-admin command-line tool, please see the section: 2.2.3 “uca-ebc-admin”

6.3 Managing the flows and actions

6.3.1 Managing the DB flows

Each Value Pack can have one or more DB flows associated with it. Each DB flow
represents a flow of events (Alarms) coming from a DB and going into the Value
Pack and its scenarios.

DB flows are defined at the Value Pack level. All Scenarios of a Value Pack share the
same DB flows.

6.3.1.1 Managing individual DB flows

The following operations can be performed on individual DB flows, without having
to restart neither UCA for EBC nor the Value Pack (each operation only affects one
DB flow):

Start a DB flow (available in Java Console and UCA for EBC GUI)

Stop a DB flow (available in Java Console and UCA for EBC GUI)

Check the status of a DB flow (available in Java Console only)

Resynchronize a DB flow (available in Java Console and UCA for EBC GUI)

103

The following screenshot shows how to perform these operations on individual DB
flows using the Java console:

|£| Java Monitoring & Management Console - pid: 9756 org.codehaus.classworlds.Launcher start E@u

|£/|Connection Window Help l:l El lIl
==

| Dverwewl Memary | Threadsl Classesl VM Summary| MBeans |

| JMImplementation Operation invocation
| com.sun.management I
| connector java.lang.String | start | ()
, java.lang

, java.util.logging

J javax.management.remote.rmi
| org.apache.activemq

uca_ebc

|\ ActionManager

! @ Collector |
@ CollectorStats ||
@ Dispatcher

b @ Properties_uca_ebc Java.lang.String stop | () N
@ Server ||
@ valuePackManager

=} | persistence-example-3.1
i ClassLoader
| DBFlows i

: [E-@ scenarioDBFlow
Attributes

| MediationFlows Java.lang.String ()

| Scenarios
@ ValuePack

java.lang.String 9)

Figure 46 - Java JMX Console: Performing operations on a single DB flow

Itis possible to start, stop, and resynchronize DB flows using the UCA for EBC User
Interface as shown in the following screenshot:

" S _— .
J UCA for EBC - persistence-example-3.1/... | + — pr— - -

€ localhost:8888/uca/#persistence-example-3.1.VALUE_PACK:MONITORING e ||B- Google Pl- + & OB ¥

7]}7_« UCA for Event Based Correlation

persistence-example-3.1 > Value Pack > Menitoring

~ & UCA-EBC.default c e-exam
Vv [persistence-exam Value Pack : persistence-example-3.1
3 Value Pack @ 41 scenarios are running. Flowis disabled Stop | | Resynchronize

@ comnpucaet

Scenarios List

Scenario Status Status Explanation Synchro Status Actions
[com.hp.uca.ebcvp.examples persistence SimpleSc) Scenario s unning (~] Dump WM |Clear WM | [Reload | |Reset Status
[
f Flows List
i Flows Source Status Status Explanation Synchro Status Actions
temipFlow T @ nscive ("] Resynchronize
scenarioDBFlow H @ rwe (<] Stop | [Resynchronize

ser "admin” logged-in

104

Figure 47 - UCA for EBC User Interface: Performing operations on a single DB flow

6.3.2 Managing the mediation flows

Each Value Pack can have one or more mediation flows associated with it. Each
mediation flow represents a flow of events (Alarms) coming from the mediation

layer and going into the Value Pack and its scenarios.

Mediation flows are defined at the Value Pack level. All Scenarios of a Value Pack

share the same mediation flows.

6.3.2.1 Managing the mediation flows at the value pack level

The following operations can be performed on the mediation flows of a Value Pack
at the Value Pack level, without having to restart neither UCA for EBC nor the Value

Pack (each operation affects all the mediation flows of the Value Pack at once):

ebc-admin tool)

Create all the mediation flows (available in Java Console, and uca-ebc-admin tool)
Delete all the mediation flows (available in Java Console, and uca-ebc-admin tool)

Resynchronize all the mediation flows (available in Java Console, uca-ebc-admin
tool and UCA for EBC GUI)

Check the status of all the mediation flows (available in Java Console, and uca-

The following screenshot shows how to perform these operation on the mediation
flows at the value pack level using the Java console:

(£ Connection Window Help

overview | Memory | Threads | Classes | vm Summary| MBeans

| Action
IMImplementation
com.sun.management
| connector
java.lang
java.util.logging
| javax.management.remote.rmi
org.apache.activemq
uca_ebc
ActionManager
@ Collector
‘@ Dispatcher
@ Properties_uca_ebc
@ Server
‘@ ValuePackManager
pd-example-3.0-5P2
@ ClassLoader
. MediationFlows
Scenarios
(=@ ValuePack
Attributes

HE

TEBREHES

[THEH-EEH B B B

Operation invocation

void | resetStatistics | ()

void | retractAllScenarios | ()

void [gumpSessionOfAllScenarios | ()

void | reloadAllScenarios | ()

57 [onsusiories]

507 gaamdsiarions |

500 (ommosbdsiorins |

507 et |

Figure 48 - Java JMX Console: Performing operations on mediation flows at the

Value Pack level

Resynchronizing the mediation flows is the only operation that can be performed at
the value pack level on the mediation flows of a value pack using the UCA for EBC
User Interface as shown in the following screenshot:

105

= - S ——— o

Logout Help ~ =1

pd-example-3.0-SP2 > Value Pack > Montoring

A Monitoring Configuration Traubleshaoting

Value Pack : pd-example-3.0-5P2

on

Stop | |Resynchronize

Status Status Explanation Actions.

xpert vp.pd ProblemDetection @ scenaro s unnin 9 Dump WM | [Clear WM | [Reload | [Reset Status

Mediation Flows List

Mediation Flows s Status Explanation Actions.

Flowt Active
Flow2 Active

Flow3 Active

000

[™[] 03:19:54 Notification: ValuePack pd-example-3.0-SP2 : Running

Figure 49 - UCA for EBC User Interface: Resynchronizing the mediation flows of a
Value Pack

Resynchronizing the mediation flows of a Value Pack can be necessary at times
when you want to start fresh with your Value Pack and all its scenarios.

Mediation flows at defined at the Value Pack level in the
ValuePackConfiguration.xml file of the Value Pack. Each Value Pack has its
own mediation flows. As a consequence, resynchronizing the mediation flows of a
Value Pack only affects the one Value Pack. All other Value Packs remain
unaffected by the resynchronization.

When the mediation flows of a Value Pack are resynchronized, all the scenarios will

receive the current list of events (Alarms) coming from the mediation layer. Usually,
aresynchronization of the mediation flows is preceded by an operation to clear the

Working Memory of all the scenarios of the Value Pack, so that:

e events (Alarms) are not duplicated in Working Memory, especially for
scenarios that are in STREAM mode

¢ all scenarios can start fresh with both the complete current list of event
from the mediation layer and an empty Working Memory

Note

%~ For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide®®~ For more information on how to
resynchronize the mediation flow for a value pack, please see the section: 5.1.3.2
“Monitoring UCA for EBC value packs”

6.3.2.2 Managing individual mediation flows

The following operations can be performed on individual mediation flows, without
having to restart neither UCA for EBC nor the Value Pack (each operation only
affects one mediation flow):

e Start a mediation flow (available in Java Console, uca-ebc-admin tool and UCA for
EBC GUI)

106

e Stop a mediation flow (available in Java Console, uca-ebc-admin tool and UCA for
EBC GUI)

e Check the status of a mediation flow (available in Java Console, and uca-ebc-
admin tool)

e Resynchronize a mediation flow (available in Java Console, uca-ebc-admin tool
and UCA for EBC GUI)

¢ Display the configuration of the mediation flow (as XML text) (available only in
Java Console)

o Display the status/output of the last action (either CreateFlow, DeleteFlow,
StatusFlow or ResynchronizeFlow) performed on the mediation flow
(available only in Java Console)

o Display the status/output of the last CreateFlow action performed on the
mediation flow (available only in Java Console)

o Display the status/output of the last DeleteFlow action performed on the
mediation flow (available only in Java Console)

o Display the status/output of the last StatusFlow action performed on the
mediation flow (available only in Java Console)

o Display the status/output of the last ResynchronizeFlow action performed
on the mediation flow (available only in Java Console)

The following screenshot shows how to perform these operations on individual
mediation flows using the Java console:

|£] Connection Window Help o) x
overview | Memary | Threads | classes| v summary| MBeans | ==
t1 Action Operation invocation
H IMImplementation 7
tH- . com.sun.management java.lang.String [ctart | ()
F- | connector
F1- 1) java.lang
B | java.utillogging —_—
FH- | javax.management.remote.rmi Java.lang.String [gtap | ()
B | org.apache.activemq
= uca_ebe
+ ActionManager amnashnoll B
@ Collector L < 9 |zl ()
4@ Dispatcher
+@® Properties_uca_ebc
H-@@ Server I St
java.lang.String
*1-8@ ValuePackManager Lesindhonizeg) ()
= pd-example-3.0-5F2
FH0@ ClassLoader
= MediationFlows java.lang.String displayMediationFlowxML | ()
E-@ Flowl
i [H-Attributes
[E=R0pe
FH @ Flow2 j ng.String | displayLs i 0
(@ Flow3

. Seenarios
4 ValuePack

java.lang.String | displayLastCreateFlowActionstatus | ()

Java.lang.String [gisplayL astDeleteFlowActionStatus | ()

java.lang.String | displayLastStatusFlowActionStatus | ()

Java.lang.String | gigplayL astResynchFlowActionStatus | ()

Figure 50 - Java JMX Console: Performing operations on a single mediation flow

It is possible to start, stop, resynchronize, as well as view the status of individual
mediation flows using the UCA for EBC User Interface as shown in the following
screenshot:

107

[Firefox © | — —— - - [oy =)

{71 UCA for EBC - pd-example-30-... | +

Logout | |Help ~||S5LE

ﬁﬁ\ UCA for Event Based Correlation

pd-example-2.0-5P2 > Value Pack > Wonitoring

~ & Monitoring Gonfiguration Traubleshooting

2§ Value Pack : pd-gxample-3.0-5P2
AL @ e aiarm flow is not actve (soe traces for detals Stop | [Resynchronze

VB

Scenaris Status Status Explanation Actions

com.p.uca.expert.vp.pd.ProblemDetection @ scenano s running Dump WM | |Clear WM | [Reload | [Reset Status

Mediation Flows List

Mediation Flows. s Status Explanation Actions

Flow1 Faied Start

(XYY

— Actve stop| [Resynchronze [

[™[I0 04:15:45 Notification: ValuePack pd-example-3.0-SP2 : Degraded

Figure 51 - UCA for EBC User Interface: Performing operations on a single
mediation flow

6.3.3 Managing actions

Actions are executed by the mediation layer. Each action is associated with the
scenario that started the action.

6.3.3.1 Dumping Failed Actions

As actions are executed by the mediation layer, dumping the list of failed actions
for a Scenario can be of great help while investigating issues regarding the
mediation layer at the Scenario level.

The list of failed actions can be dumped in the log files (depending on your Log4)
configuration). The log files can be viewed directly on the file system in the
${UCA_ EBC_ INSTANCE}/logs directory using any text editor. The log files can
also be viewed at the UCA for EBC User Interface in the Troubleshooting/Logs panel.

Dumping failed actions can only be performed using the Java JMX Console at the
Scenario level by going to the “MBeans” tab of the Java Console and navigating to
the “uca_ebc/<value pack name>-<value pack version>/scenarios/<scenario
name>/operations” folder.

The following screenshot shows how to dump failed actions at the scenario level:

108

|2 Connection Window Help

overview | Memory | Threads | Classes | vm summary| MBEHHSl

x

Action
IMImplementation

com.sun.management
. connector
. java.lang
java.util.logging
javax.management.remote.rmi
org.apache.activemq
uca_ebc
ActionManager
Collector
Dispatcher
Properties_uca_ebc
Server
@ ValuePackManager

pd-example-3.0-SFP2
[ClassLoader
MediationFlows
). Stenarios
(=@ com.hp.uca.expert.vp.pd.Probl
Altributes

@ ValuePack

=

< I 3

Operation invocation

void 0
boolean (p0
void 0
e 0
void 0
void 0
voud 0
boolean 0

0

String)

Figure 52 - Java JMX Console: Dumping Failed Actions for a Scenario

Note

"~ For more information on how to dump failed actions for a scenario, please see
the section: 5.1.3.3 “Monitoring UCA for EBC scenarios”

6.4 UCA for EBC Performance analysis

Through the Java JMX interface, UCA for EBC provides event rate measurements

that help when analyzing the performance of a UCA for EBC solution.

This “Dispatcher Rate” measure is the average event rate of UCA for EBC (in events
per second) since start-up.

This measure is available by going to the “MBeans” tab of the Java Console and

navigating to the “uca_ebc/Dispatcher/attributes” folder:

[THE-FH

. org.apache.activemg

[=-#@ Dispatcher

=8

javax.management.remote.rmi

ca_ebc
ActionManager
@ Collector

Operations

@ Properties_uca_ebc

@ Server

@ ValuePackManager
pd-example-3.0-5P2

|£| Connection Window Help & x
[overview | Memary | Threads | Classes | v Summary| MBeans | =l=
[1 Action Attribute values
IMImplementation
com.sun.management Name Value
J connector DispatcherRate |0.2769206424558905
. Javalang LogEvents Ifalse
java.util.logging Queue_CurrentSize 0]

Queue_DatelastCh:

2013-05-21 14:47:11.187 +0200

Queue_DatelastDeletionEvent

2013-05-21 14:24:07.896 +0200

Queue_DatelastHighWaterMark

2013-05-21 14:24:52.216 +0200

Queue_DatelastPublish

2013-05-21 16:18:24.619 +0200

Queue_DatelastSubscribe

2013-05-21 16:18:24.620 +0200

Queue_DatelastZeroed

2013-05-21 16:18:24.620 +0200

Queue_HighWaterMarl

o

Queue_NumberZeroedSincelastHighwaterMark

'isa
17

QuEuE:nghWatErMar StillIncreasing

Queue_SizeHistory java.lang.String[2]
Queue_TotalChangesEvents (]
Queue_TotalDeletionEvents o
Queue_TotalObjects 23
Queue_TotalObjectsSincelastHighWaterMark |18

109

Figure 53 - Java JMX Console: Monitoring performance of UCA for EBC Server

This measure and other measurement rates are available both at the Java JMX
Console and also at the UCA for EBC User Interface in the Troubleshooting /
Statistics panel.

Note

" For more information on the Java JMX Console, please see the section: 5.1.3
“JMX Console”

" For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for EBC User Interface Guide™®~ Please see the next section 4.1 “Monitoring

the alarm flow in real-time” for more information on how to monitor the alarm flow
of UCA for EBC.

110

Chapter 7

Frequent problems and solutions

Below is a list of known issues/ problems that you may encounter, along with a
description of how to solve or work around the issue/problem.

7.1 Problems executing uca-ebc-admin

7.1.1 Cannot connect to UCA for EBC JMX connector

If you get an error stating “Cannot connect to UCA Expert JMX connector” while
executing the uca-ebc-admin command-line tool, then you may want to perform
the following verifications:

Verification Suggested solution/work-
around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it
is stopped

Table 40 - uca-ebc-admin: Cannot connect to UCA for EBC JMX connector

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-admin <options>

7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-
ebc-admin.log

If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}
[/logs/uca-ebc-admin.log” while executing the uca-ebc-admin command-line tool,
then you may want to perform the following verifications:

Verification Suggested solution/work-

around

111

Verify that the user trying to execute uca- Use another user account or

ebc-admin has permission to write in the change the permissions on

${UCA_EBC_INSTANCE]} directory the ${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 41 - uca-ebc-admin: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME!}/bin
$ uca-ebc-admin <options>

7.2 Problems executing uca-ebc-injector

7.2.1 Cannot create connection

If you get an error stating “Cannot create connection on UCA Expert JMS queue”
while executing the uca-ebc-injector command-line tool, then you may want to
perform the following verifications:

Verification Suggested solution/work-around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it is
stopped

Table 42 - uca-ebc-injector: Cannot create connection

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector <options>

112

7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-
ebc-injector.log
If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}

/logs/uca-ebc-injector.log” while executing the uca-ebc-injector command-line
tool, then you may want to perform the following verifications:

Verification Suggested solution/work-
around

Verify that the user trying to execute uca- Use another user account or

ebc-injector has permission to write in the change the permissions on

${UCA_EBC_INSTANCE]} directory the ${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 43 - uca-ebc-injector: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector <options>

7.3 Problems starting UCA for EBC

7.3.1 AlreadyBoundException

If you get an error stating “java.rmi.AlreadyBoundException: uca-ebc” while
starting UCA for EBC, then you may want to perform the following verifications:

Verification Suggested solution/work-around

Verify that there’s no port number Update the UCA for EBC RMI port
conflict between UCA for EBC RMI number in the

port number and the port numbers ${UCA_EBC_INSTANCE}/conf/uca-
used by another process on the ebc.properties file to avoid the port
system number conflict if needed

Table 44 - uca-ebc: AlreadyBoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

113

7.3.2 ClassNotFoundException:
javax.management.remote.rmi.RMiServerimpl_Stub

If you get an error stating “java.lang.ClassNotFoundException:
javax.management.remote.rmi.RMIServerimpl_Stub” while starting UCA for EBC,
then you may want to perform the following verifications:

Verification Suggested solution/work-around

Verify that there’s no port number Update the UCA for EBC RMI port
conflict between UCA for EBC RMI number in the

port number and the port numbers ${UCA_EBC_INSTANCE}/conf/uca-
used by another process on the ebc.properties file to avoid the port
system number conflict if needed

Table 45 - uca-ebc: ClassNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

114

7.3.3 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-

ebc.log
If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}

/logs/uca-ebc.log” while starting UCA for EBC, then you may want to perform the

following verifications:

Verification Suggested solution/work-around

Verify that the user trying to start Start UCA for EBC under the uca
UCA for EBC has permission to account if this is not the case
write in the

${UCA_EBC_INSTANCE]} directory

Table 46 - uca-ebc: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

115

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

CA: Channel Adapter for 0SS Open Mediation V7.1
JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for
EBC product

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm
DRL: Drools Rule file

XML: eXtensible Markup Language

XSD: Schema of an XML file, describing its structure

X733: Standard describing the structure of an Alarm used in telecommunication
environment

EVP: UCA for EBC Value Pack

116

